RowConvOpGpu.cu 11.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "RowConvOp.h"
L
liaogang 已提交
16
#include "hl_base.h"
D
dangqingqing 已提交
17 18 19

namespace paddle {

L
liaogang 已提交
20 21 22 23 24 25 26 27 28
template <int BLOCK_H, int BLOCK_W>
__global__ void KeRowConv(real* y,
                          const real* x,
                          const real* w,
                          const int* starts,
                          const int height,
                          const int width,
                          const int numSeq,
                          const int context) {
D
dangqingqing 已提交
29 30 31 32 33 34 35 36
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int blky = blockDim.y;
  const int gidx = blockIdx.x * blockDim.x;

  __shared__ real sw[BLOCK_H][BLOCK_W];

  for (int i = tidy; i < context; i += blky) {
L
liaogang 已提交
37
    sw[i][tidx] = gidx + tidx < width ? w[i * width + gidx + tidx] : 0.0;
D
dangqingqing 已提交
38
  }
J
jc 已提交
39

D
dangqingqing 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  __syncthreads();

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
    for (int j = tidy; j < steps; j += blky) {
      real sum = 0;
      int off = (start + j) * width;
      for (int t = 0; t < context; ++t) {
        if ((start + j + t) < end) {
          int xoff = off + t * width;
          real xVal = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0;
          sum += sw[t][tidx] * xVal;
        }
      }
      if (gidx + tidx < width) {
        y[off + gidx + tidx] += sum;
      }
    }
  }
}

L
liaogang 已提交
63 64 65 66 67 68 69 70
__global__ void KeRowConv2(real* y,
                           const real* x,
                           const real* w,
                           const int* starts,
                           const int height,
                           const int width,
                           const int numSeq,
                           const int context) {
D
dangqingqing 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int blky = blockDim.y;
  const int gidx = blockIdx.x * blockDim.x;

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
    for (int j = tidy; j < steps; j += blky) {
      int off = (start + j) * width;
      real sum = 0;
      for (int t = 0; t < context && (start + j + t) < end; ++t) {
        int xoff = off + t * width;
        real xd = gidx + tidx < width ? x[xoff + gidx + tidx] : 0.0;
        real wd = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0;
        sum += wd * xd;
      }
      if (gidx + tidx < width) {
        y[off + gidx + tidx] += sum;
      }
    }
  }
}

template <>
void RowConv<DEVICE_TYPE_GPU>(GpuMatrix& out,
                              const GpuMatrix& in,
                              const GpuMatrix& filter,
                              const GpuIVector& seq) {
  const size_t numSeq = seq.getSize() - 1;
  const size_t contextLength = filter.getHeight();
  const size_t height = in.getHeight();
  const size_t width = in.getWidth();

  real* y = out.getData();
  const real* x = in.getData();
  const real* w = filter.getData();
  const int* starts = seq.getData();

  dim3 dimBlock(32, 32);
  dim3 dimGrid(DIVUP(width, dimBlock.x), 1);

  if (contextLength <= 32) {
L
liaogang 已提交
115 116
    KeRowConv<32, 32><<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
        y, x, w, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
117
  } else {
L
liaogang 已提交
118 119
    KeRowConv2<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
        y, x, w, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
120 121 122 123
  }
  CHECK_SYNC("RowConv");
}

L
liaogang 已提交
124 125 126 127 128 129 130 131 132
template <int BLOCK_H, int BLOCK_W, int CONTEXT>
__global__ void KeRowConvBwWeight(real* dw,
                                  const real* x,
                                  const real* dy,
                                  const int* starts,
                                  const int height,
                                  const int width,
                                  const int numSeq,
                                  const int context) {
D
dangqingqing 已提交
133 134 135 136 137
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int blky = blockDim.y;
  const int gidx = blockIdx.x * blockDim.x;

D
dangqingqing 已提交
138 139
  __shared__ real sh_x[BLOCK_W][BLOCK_H];
  __shared__ real sh_dy[BLOCK_W][BLOCK_H + CONTEXT - 1];
D
dangqingqing 已提交
140 141
  __shared__ real sh_dw[CONTEXT][BLOCK_W];

D
dangqingqing 已提交
142 143
  if (tidy < context) {
    sh_dw[tidy][tidx] = 0.0;
D
dangqingqing 已提交
144 145 146 147 148 149 150
  }
  __syncthreads();

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
L
liaogang 已提交
151
    const int size = ((steps + BLOCK_H - 1) / BLOCK_H) * BLOCK_H;
D
dangqingqing 已提交
152
    for (int j = tidy; j < size; j += BLOCK_H) {
D
dangqingqing 已提交
153 154 155 156
      int xoff = gidx + tidx;
      int yoff = start + j;

      // transpose
L
liaogang 已提交
157 158 159 160
      sh_x[tidx][tidy] =
          (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
      sh_dy[tidx][tidy + context - 1] =
          (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0;
D
dangqingqing 已提交
161 162 163
      __syncthreads();
      if (tidy < (context - 1)) {
        yoff = yoff - context + 1;
L
liaogang 已提交
164 165
        sh_dy[tidx][tidy] =
            (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0;
D
dangqingqing 已提交
166
      }
D
dangqingqing 已提交
167 168 169
      __syncthreads();

      for (int t = 0; t < context; t++) {
D
dangqingqing 已提交
170 171
        real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx + context - 1 - t];
        __syncthreads();
D
dangqingqing 已提交
172
        // warp size and blockDim.x is 32.
D
dangqingqing 已提交
173 174 175 176 177 178
        val += __shfl_down(val, 16);
        val += __shfl_down(val, 8);
        val += __shfl_down(val, 4);
        val += __shfl_down(val, 2);
        val += __shfl_down(val, 1);
        __syncthreads();
D
dangqingqing 已提交
179 180 181 182 183 184 185 186
        if (tidx == 0) {
          sh_dw[t][tidy] += val;
        }
        __syncthreads();
      }
    }
  }

D
dangqingqing 已提交
187
  for (int t = tidy; (t < context) && ((gidx + tidx) < width); t += blky) {
D
dangqingqing 已提交
188 189 190 191
    dw[t * width + gidx + tidx] += sh_dw[t][tidx];
  }
}

L
liaogang 已提交
192 193 194 195 196 197 198 199 200
template <int BLOCK_H, int BLOCK_W>
__global__ void KeRowConvBwWeight2(real* dw,
                                   const real* x,
                                   const real* dy,
                                   const int* starts,
                                   const int height,
                                   const int width,
                                   const int numSeq,
                                   const int context) {
D
dangqingqing 已提交
201 202 203 204 205 206 207 208 209 210 211
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int gidx = blockIdx.x * blockDim.x;

  __shared__ real sh_x[BLOCK_H][BLOCK_W];
  __shared__ real sh_dy[BLOCK_H][BLOCK_W];

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
D
dangqingqing 已提交
212

L
liaogang 已提交
213
    const int size = ((steps + BLOCK_H - 1) / BLOCK_H) * BLOCK_H;
D
dangqingqing 已提交
214
    for (int j = tidy; j < size; j += BLOCK_H) {
D
dangqingqing 已提交
215 216 217 218
      int xoff = gidx + tidx;
      int yoff = start + j;

      // transpose
L
liaogang 已提交
219 220
      sh_x[tidx][tidy] =
          (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0;
D
dangqingqing 已提交
221 222 223
      __syncthreads();

      for (int t = 0; t < context; t++) {
L
liaogang 已提交
224 225 226 227
        sh_dy[tidx][tidy] =
            (xoff < width && (yoff - t) >= start && yoff - t < end)
                ? dy[(yoff - t) * width + xoff]
                : 0.0;
D
dangqingqing 已提交
228 229 230 231
        __syncthreads();

        real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx];
        __syncthreads();
D
dangqingqing 已提交
232
        // warp size and blockDim.x is 32.
D
dangqingqing 已提交
233 234 235 236 237 238 239
        val += __shfl_down(val, 16);
        val += __shfl_down(val, 8);
        val += __shfl_down(val, 4);
        val += __shfl_down(val, 2);
        val += __shfl_down(val, 1);
        __syncthreads();

D
dangqingqing 已提交
240
        if (tidx == 0 && (gidx + tidy) < width) {
L
liaogang 已提交
241
          dw[t * width + gidx + tidy] += val;
D
dangqingqing 已提交
242 243 244 245 246 247
        }
      }
    }
  }
}

L
liaogang 已提交
248 249 250 251 252 253 254 255 256
template <int BLOCK_H, int BLOCK_W>
__global__ void KeRowConvBwData(real* dx,
                                const real* w,
                                const real* dy,
                                const int* starts,
                                const int height,
                                const int width,
                                const int numSeq,
                                const int context) {
D
dangqingqing 已提交
257 258 259 260 261 262 263 264
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int blky = blockDim.y;
  const int gidx = blockIdx.x * blockDim.x;

  __shared__ real sw[BLOCK_H][BLOCK_W];

  for (int i = tidy; i < context; i += blky) {
L
liaogang 已提交
265
    sw[i][tidx] = gidx + tidx < width ? w[i * width + gidx + tidx] : 0.0;
D
dangqingqing 已提交
266
  }
J
jc 已提交
267

D
dangqingqing 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  __syncthreads();

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
    for (int j = tidy; j < steps; j += blky) {
      real sum = 0;
      int off = (start + j) * width;
      for (int t = 0; t < context && (j - t) >= 0; ++t) {
        int dyOff = off - t * width;
        real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0;
        sum += sw[t][tidx] * dyVal;
      }
      if (gidx + tidx < width) {
        dx[off + gidx + tidx] += sum;
      }
    }
  }
}

L
liaogang 已提交
289 290 291 292 293 294 295 296
__global__ void KeRowConvBwData2(real* dx,
                                 const real* w,
                                 const real* dy,
                                 const int* starts,
                                 const int height,
                                 const int width,
                                 const int numSeq,
                                 const int context) {
D
dangqingqing 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  const int tidx = threadIdx.x;
  const int tidy = threadIdx.y;
  const int blky = blockDim.y;
  const int gidx = blockIdx.x * blockDim.x;

  for (int i = 0; i < numSeq; ++i) {
    const int start = starts[i];
    const int end = starts[i + 1];
    const int steps = end - start;
    for (int j = tidy; j < steps; j += blky) {
      real sum = 0;
      int off = (start + j) * width;
      for (int t = 0; t < context && (j - t) >= 0; ++t) {
        int dyOff = off - t * width;
        real dyVal = gidx + tidx < width ? dy[dyOff + gidx + tidx] : 0.0;
        real wVal = gidx + tidx < width ? w[t * width + gidx + tidx] : 0.0;
        sum += wVal * dyVal;
      }
      if (gidx + tidx < width) {
        dx[off + gidx + tidx] += sum;
      }
    }
  }
}

template <>
void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG,
L
liaogang 已提交
324 325 326 327 328
                                  const GpuMatrix& in,
                                  const GpuMatrix& filter,
                                  GpuMatrix& inG,
                                  GpuMatrix& filterG,
                                  const GpuIVector& seq) {
D
dangqingqing 已提交
329 330 331 332 333 334 335 336 337 338
  const size_t numSeq = seq.getSize() - 1;
  const size_t contextLength = filter.getHeight();
  const size_t height = in.getHeight();
  const size_t width = in.getWidth();

  const real* dy = outG.getData();
  const real* x = in.getData();
  const real* w = filter.getData();
  const int* starts = seq.getData();

D
dangqingqing 已提交
339 340 341 342
  if (filterG) {
    dim3 dimBlock(32, 32);
    dim3 dimGrid(DIVUP(width, dimBlock.x), 1);
    real* dw = filterG.getData();
J
jc 已提交
343
    if (contextLength <= 32) {
L
liaogang 已提交
344 345
      KeRowConvBwWeight<32, 32, 32><<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
          dw, x, dy, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
346
    } else {
L
liaogang 已提交
347 348
      KeRowConvBwWeight2<32, 32><<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
          dw, x, dy, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
349
    }
D
dangqingqing 已提交
350 351
  }

D
dangqingqing 已提交
352 353 354 355 356
  if (inG) {
    real* dx = inG.getData();
    dim3 dimBlock2(32, 32);
    dim3 dimGrid2(DIVUP(width, dimBlock2.x), 1);
    if (contextLength <= 64) {
L
liaogang 已提交
357 358
      KeRowConvBwData<32, 64><<<dimGrid2, dimBlock2, 0, STREAM_DEFAULT>>>(
          dx, w, dy, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
359
    } else {
L
liaogang 已提交
360 361
      KeRowConvBwData2<<<dimGrid2, dimBlock2, 0, STREAM_DEFAULT>>>(
          dx, w, dy, starts, height, width, numSeq, contextLength);
D
dangqingqing 已提交
362
    }
D
dangqingqing 已提交
363 364 365 366 367 368
  }

  CHECK_SYNC("RowConvGrad");
}

}  // namespace paddle