README.md 16.5 KB
Newer Older
W
wangguanzhong 已提交
1 2
简体中文 | [English](README_en.md)

3
<img src="https://user-images.githubusercontent.com/48054808/185032511-0c97b21c-8bab-4ab1-89ee-16e5e81c22cc.png" title="" alt="" data-align="center">
W
wangguanzhong 已提交
4 5 6



7 8 9 10 11 12
**PaddleDetection深入探索核心行业的高频场景,提供了行人、车辆场景的开箱即用分析工具,支持图片/单镜头视频/多镜头视频/在线视频流多种输入方式,广泛应用于智慧交通、智慧城市、工业巡检等领域。支持服务器端部署及TensorRT加速,T4服务器上可达到实时。**

- 🚶‍♂️🚶‍♀️ **PP-Human支持四大产业级功能:五大异常行为识别、26种人体属性分析、实时人流计数、跨镜头(ReID)跟踪。**

- 🚗🚙 **PP-Vehicle囊括四大交通场景核心功能:车牌识别、属性识别、车流量统计、违章检测。**

W
wangguanzhong 已提交
13
![](https://user-images.githubusercontent.com/22989727/202134414-713a00d6-a0a4-4a77-b6e8-05cdb5d42b1e.gif)
14

W
wangguanzhong 已提交
15
## 📣 近期更新
W
wangguanzhong 已提交
16

Z
zhiboniu 已提交
17 18
- 🔥🔥🔥 **2023.02.15: Jetson部署专用小模型PP-YOLOE-PLUS-Tiny发布,可在AGX平台实现4路视频流实时预测;PP-Vehicle发布违法分析功能车辆逆行和压车道线**
- **2022.8.20:PP-Vehicle首发,提供车牌识别、车辆属性分析(颜色、车型)、车流量统计以及违章检测四大功能,完善的文档教程支持高效完成二次开发与模型优化**
19
- **2022.7.13:PP-Human v2发布,新增打架、打电话、抽烟、闯入四大行为识别,底层算法性能升级,覆盖行人检测、跟踪、属性三类核心算法能力,提供保姆级全流程开发及模型优化策略**
W
wangguanzhong 已提交
20 21 22
- 2022.4.18:新增PP-Human全流程实战教程, 覆盖训练、部署、动作类型扩展等内容,AIStudio项目请见[链接](https://aistudio.baidu.com/aistudio/projectdetail/3842982)
- 2022.4.10:新增PP-Human范例,赋能社区智能精细化管理, AIStudio快速上手教程[链接](https://aistudio.baidu.com/aistudio/projectdetail/3679564)
- 2022.4.5:全新发布实时行人分析工具PP-Human,支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度
W
wangguanzhong 已提交
23

W
wangguanzhong 已提交
24
## 🔮 功能介绍与效果展示
W
wangguanzhong 已提交
25

26 27 28 29 30 31
### PP-Human

| ⭐ 功能                  | 💟 方案优势                                                                                                                                     | 💡示例图                                                                                                      |
| --------------------- | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
| **跨镜跟踪(ReID)**        | 超强性能:针对目标遮挡、完整度、模糊度等难点特殊优化,实现mAP 98.8、1.5ms/人                                                                                               | <img title="" src="https://user-images.githubusercontent.com/48054808/173037607-0a5deadc-076e-4dcc-bd96-d54eea205f1f.png" alt="" width="191"> |
| **属性分析**              | 兼容多种数据格式:支持图片、视频、在线视频流输入<br><br>高性能:融合开源数据集与企业真实数据进行训练,实现mAP 95.4、2ms/人<br><br>支持26种属性:性别、年龄、眼镜、上衣、鞋子、帽子、背包等26种高频属性                         | <img title="" src="https://user-images.githubusercontent.com/48054808/173036043-68b90df7-e95e-4ada-96ae-20f52bc98d7c.png" alt="" width="191">|
Z
zhiboniu 已提交
32
| **行为识别(包含摔倒、打架、抽烟、打电话、人员闯入)**              | 功能丰富:支持摔倒、打架、抽烟、打电话、人员闯入五种高频异常行为识别<br><br>鲁棒性强:对光照、视角、背景环境无限制<br><br>性能高:与视频识别技术相比,模型计算量大幅降低,支持本地化与服务化快速部署<br><br>训练速度快:仅需15分钟即可产出高精度行为识别模型 |<img title="" src="https://user-images.githubusercontent.com/48054808/173034825-623e4f78-22a5-4f14-9b83-dc47aa868478.gif" alt="" width="191">  |
33 34 35 36 37 38
| **人流量计数**<br>**轨迹记录** | 简洁易用:单个参数即可开启人流量计数与轨迹记录功能                                                                                                                   | <img title="" src="https://user-images.githubusercontent.com/22989727/174736440-87cd5169-c939-48f8-90a1-0495a1fcb2b1.gif" alt="" width="191"> |

### PP-Vehicle

| ⭐ 功能       | 💟 方案优势                                                                                    | 💡示例图                                                                                                                                         |
| ---------- | ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------- |
39 40 41 42
| **车牌识别**   | 支持传统车牌和新能源绿色车牌 <br/><br/> 车牌识别采用长间隔采样识别与多次结果统计投票方式,算力消耗少,识别精度高,结果稳定性好。 检测模型 hmean: 0.979; 识别模型 acc: 0.773          | <img title="" src="https://user-images.githubusercontent.com/48054808/185027987-6144cafd-0286-4c32-8425-7ab9515d1ec3.png" alt="" width="191"> |
| **车辆属性分析** | 支持多种车型、颜色类别识别 <br/><br/> 使用更强力的Backbone模型PP-HGNet、PP-LCNet,精度高、速度快。识别精度: 90.81 | <img title="" src="https://user-images.githubusercontent.com/48054808/185044490-00edd930-1885-4e79-b3d4-3a39a77dea93.gif" alt="" width="207"> |
| **违章检测**   | 简单易用:一行命令即可实现违停检测,自定义设置区域 <br/><br/> 检测、跟踪效果好,可实现违停车辆车牌识别    | <img title="" src="https://user-images.githubusercontent.com/48054808/185028419-58ae0af8-a035-42e7-9583-25f5e4ce0169.png" alt="" width="209"> |
| **车流量计数**  | 简单易用:一行命令即可开启功能,自定义出入位置 <br/><br/> 可提供目标跟踪轨迹显示,统计准确度高        | <img title="" src="https://user-images.githubusercontent.com/48054808/185028798-9e07379f-7486-4266-9d27-3aec943593e0.gif" alt="" width="200"> |
Z
zhiboniu 已提交
43 44
| **违法分析-车辆逆行**   | 简单易用:一行命令即可开启功能 <br/><br/> 车道线分割使用高精度模型PP-LIteSeg    | <img title="" src="https://raw.githubusercontent.com/LokeZhou/PaddleDetection/develop/deploy/pipeline/docs/images/vehicle_retrograde.gif" alt="" width="200"> |
| **违法分析-压车道线**  | 简单易用:一行命令即可开启功能 <br/><br/> 车道线分割使用高精度模型PP-LIteSeg    | <img title="" src="https://raw.githubusercontent.com/LokeZhou/PaddleDetection/develop/deploy/pipeline/docs/images/vehicle_press.gif" alt="" width="200"> |
W
wangguanzhong 已提交
45

W
wangguanzhong 已提交
46
## 🗳 模型库
W
wangguanzhong 已提交
47

48 49
### PP-Human

50
<details>
51 52 53 54 55 56
<summary><b>端到端模型效果(点击展开)</b></summary>

| 任务        | 端到端速度(ms) | 模型方案                                                                                                                                                                                                                                                                  | 模型体积                                        |
|:---------:|:---------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------:|
| 行人检测(高精度) | 25.1ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                            | 182M                                        |
| 行人检测(轻量级) | 16.2ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                            | 27M                                         |
Z
zhiboniu 已提交
57
| 行人检测(超轻量级) | 10ms(Jetson AGX)    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/pphuman/ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.tar.gz)                                                                        | 17M                                         |
58 59
| 行人跟踪(高精度) | 31.8ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                            | 182M                                        |
| 行人跟踪(轻量级) | 21.0ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip)                                                                                                                                                                            | 27M                                         |
Z
zhiboniu 已提交
60
| 行人跟踪(超轻量级) | 13.2ms(Jetson AGX)    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/pphuman/ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.tar.gz)                                                                        | 17M                                         |
61
|  跨镜跟踪(REID)   |   单人1.5ms | [REID](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | REID:92M |
62 63 64 65 66 67 68 69 70
| 属性识别(高精度) | 单人8.5ms   | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                            | 目标检测:182M<br>属性识别:86M                       |
| 属性识别(轻量级) | 单人7.1ms   | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br> [属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip)                                                                            | 目标检测:182M<br>属性识别:86M                       |
| 摔倒识别      | 单人10ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) <br> [关键点检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) <br> [基于关键点行为识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | 多目标跟踪:182M<br>关键点检测:101M<br>基于关键点行为识别:21.8M |
| 闯入识别      | 31.8ms    | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                            | 182M                                        |
| 打架识别      | 19.7ms    | [视频分类](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)                                                                                                                                                                             | 90M                                         |
| 抽烟识别      | 单人15.1ms  | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[基于人体id的目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip)                                                                 | 目标检测:182M<br>基于人体id的目标检测:27M                |
| 打电话识别     | 单人ms      | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)<br>[基于人体id的图像分类](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip)                                                                      | 目标检测:182M<br>基于人体id的图像分类:45M                |


Z
zhiboniu 已提交
71
点击模型方案中的模型即可下载指定模型,下载后解压存放至`./output_inference`目录中
72 73 74

</details>

75 76
### PP-Vehicle

77 78 79
<details>
<summary><b>端到端模型效果(点击展开)</b></summary>

Z
zhiboniu 已提交
80 81 82 83
| 任务            | 端到端速度(ms)|  模型方案  |  模型体积 |
| :---------:     | :-------:  |  :------: |:------: |
|  车辆检测(高精度)  | 25.7ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |  
|  车辆检测(轻量级)  | 13.2ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
Z
zhiboniu 已提交
84
|  车辆检测(超轻量级)  | 10ms(Jetson AGX)  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.tar.gz) | 17M |
Z
zhiboniu 已提交
85 86
|  车辆跟踪(高精度)  | 40ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
|  车辆跟踪(轻量级)  | 25ms  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
Z
zhiboniu 已提交
87
|  车辆跟踪(超轻量级)  | 13.2ms(Jetson AGX)  |  [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppvehicle/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.tar.gz) | 17M |
Z
zhiboniu 已提交
88 89
|  车牌识别  |   4.68ms |  [车牌检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz) <br> [车牌字符识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | 车牌检测:3.9M  <br> 车牌字符识别: 12M |
|  车辆属性  |   7.31ms | [车辆属性](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M |
Z
zhiboniu 已提交
90
|  车道线检测  |   47ms | [车道线模型](https://bj.bcebos.com/v1/paddledet/models/pipeline/pp_lite_stdc2_bdd100k.zip) | 47M |
91 92

点击模型方案中的模型即可下载指定模型,下载后解压存放至`./output_inference`目录中
W
wangguanzhong 已提交
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
</details>

## 📚 详细文档

### 🚶‍♀️ 行人分析工具PP-Human

#### [快速开始](docs/tutorials/PPHuman_QUICK_STARTED.md)

#### 行为识别

- [快速开始](docs/tutorials/pphuman_action.md)

- [二次开发教程](../../docs/advanced_tutorials/customization/action_recognotion/README.md)

#### 行人属性/特征识别

- [快速开始](docs/tutorials/pphuman_attribute.md)

- [二次开发教程](../../docs/advanced_tutorials/customization/pphuman_attribute.md)

#### 跨镜跟踪/ReID

- [快速开始](docs/tutorials/pphuman_mtmct.md)

- [二次开发教程](../../docs/advanced_tutorials/customization/pphuman_mtmct.md)

#### 行人跟踪、人流计数与轨迹记录

- [快速开始](docs/tutorials/pphuman_mot.md)

- [二次开发教程](../../docs/advanced_tutorials/customization/pphuman_mot.md)

### 🚘 车辆分析工具PP-Vehicle

#### [快速开始](docs/tutorials/PPVehicle_QUICK_STARTED.md)

#### 车牌识别

- [快速开始](docs/tutorials/ppvehicle_plate.md)

- [二次开发教程](../../docs/advanced_tutorials/customization/ppvehicle_plate.md)
W
wangguanzhong 已提交
135

136
#### 车辆属性分析
W
wangguanzhong 已提交
137

138
- [快速开始](docs/tutorials/ppvehicle_attribute.md)
W
wangguanzhong 已提交
139

140
- [二次开发教程](../../docs/advanced_tutorials/customization/ppvehicle_attribute.md)
W
wangguanzhong 已提交
141

142
#### 违章检测
W
wangguanzhong 已提交
143

144
- [快速开始](docs/tutorials/ppvehicle_illegal_parking.md)
W
wangguanzhong 已提交
145

146
- [二次开发教程](../../docs/advanced_tutorials/customization/pphuman_mot.md)
W
wangguanzhong 已提交
147

148
#### 车辆跟踪、车流计数与轨迹记录
W
wangguanzhong 已提交
149

150
- [快速开始](docs/tutorials/ppvehicle_mot.md)
W
wangguanzhong 已提交
151

152
- [二次开发教程](../../docs/advanced_tutorials/customization/pphuman_mot.md)
153 154 155 156 157

#### 车辆违法压线

- [快速开始](docs/tutorials/ppvehicle_press.md)

Z
zhiboniu 已提交
158 159
- [二次开发教程]

160 161 162
#### 车辆逆行

- [快速开始](docs/tutorials/ppvehicle_retrograde.md)
Z
zhiboniu 已提交
163 164

- [二次开发教程]