export_utils.py 3.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
Q
qingqing01 已提交
13 14 15 16 17 18 19 20 21 22
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import yaml
from collections import OrderedDict

K
Kaipeng Deng 已提交
23
from ppdet.metrics import get_categories
Q
qingqing01 已提交
24

K
Kaipeng Deng 已提交
25 26
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
Q
qingqing01 已提交
27 28 29 30

# Global dictionary
TRT_MIN_SUBGRAPH = {
    'YOLO': 3,
F
Feng Ni 已提交
31
    'SSD': 40,
Q
qingqing01 已提交
32 33 34 35
    'RCNN': 40,
    'RetinaNet': 40,
    'EfficientDet': 40,
    'Face': 3,
F
Feng Ni 已提交
36 37
    'TTFNet': 3,
    'FCOS': 16,
Q
qingqing01 已提交
38 39 40 41
    'SOLOv2': 60,
}


K
Kaipeng Deng 已提交
42
def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
Q
qingqing01 已提交
43 44 45 46
    preprocess_list = []

    anno_file = dataset_cfg.get_anno()
    with_background = reader_cfg['with_background']
K
Kaipeng Deng 已提交
47 48

    clsid2catid, catid2name = get_categories(metric, anno_file, with_background)
Q
qingqing01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    label_list = [str(cat) for cat in catid2name.values()]

    sample_transforms = reader_cfg['sample_transforms']
    for st in sample_transforms[1:]:
        for key, value in st.items():
            p = {'type': key}
            if key == 'ResizeOp':
                if value.get('keep_ratio',
                             False) and image_shape[1] is not None:
                    max_size = max(image_shape[1:])
                    image_shape = [3, max_size, max_size]
                    value['target_size'] = image_shape[1:]
            p.update(value)
            preprocess_list.append(p)
    batch_transforms = reader_cfg.get('batch_transforms', None)
    if batch_transforms:
        methods = [list(bt.keys())[0] for bt in batch_transforms]
        for bt in batch_transforms:
            for key, value in bt.items():
                if key == 'PadBatchOp':
                    preprocess_list.append({'type': 'PadStride'})
                    preprocess_list[-1].update({
                        'stride': value['pad_to_stride']
                    })
                    break

    return with_background, preprocess_list, label_list, image_shape


K
Kaipeng Deng 已提交
79
def _dump_infer_config(config, path, image_shape, model):
Q
qingqing01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    arch_state = False
    from ppdet.core.config.yaml_helpers import setup_orderdict
    setup_orderdict()
    infer_cfg = OrderedDict({
        'mode': 'fluid',
        'draw_threshold': 0.5,
        'metric': config['metric'],
        'image_shape': image_shape
    })
    infer_arch = config['architecture']

    for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
        if arch in infer_arch:
            infer_cfg['arch'] = arch
            infer_cfg['min_subgraph_size'] = min_subgraph_size
            arch_state = True
            break
    if not arch_state:
        logger.error(
            'Architecture: {} is not supported for exporting model now'.format(
                infer_arch))
        os._exit(0)
102 103
    if 'mask_post_process' in model.__dict__ and model.__dict__[
            'mask_post_process']:
Q
qingqing01 已提交
104 105
        infer_cfg['mask_resolution'] = model.mask_post_process.mask_resolution
    infer_cfg['with_background'], infer_cfg['Preprocess'], infer_cfg[
K
Kaipeng Deng 已提交
106
        'label_list'], image_shape = _parse_reader(
Q
qingqing01 已提交
107 108 109 110 111 112
            config['TestReader'], config['TestDataset'], config['metric'],
            infer_cfg['arch'], image_shape)

    yaml.dump(infer_cfg, open(path, 'w'))
    logger.info("Export inference config file to {}".format(os.path.join(path)))
    return image_shape