tester_helper.h 13.6 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
L
luotao1 已提交
18
#include <algorithm>
T
Tao Luo 已提交
19
#include <string>
L
luotao1 已提交
20 21
#include <thread>  // NOLINT
#include <vector>
22

L
luotao1 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
25 26 27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
29 30 31

#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
32
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
34 35
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
36
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
37 38
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
39
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
40 41 42 43
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
44 45
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
46 47
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
48

49
DECLARE_bool(profile);
L
luotao1 已提交
50
DECLARE_int32(paddle_num_threads);
51

L
luotao1 已提交
52 53 54
namespace paddle {
namespace inference {

55 56 57 58 59
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
  if (use_analysis) {
    LOG(INFO) << *reinterpret_cast<const contrib::AnalysisConfig *>(config);
    return;
  }
60
  LOG(INFO) << *reinterpret_cast<const NativeConfig *>(config);
61
}
Y
Yan Chunwei 已提交
62

L
luotao1 已提交
63
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
64
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
65
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
66
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
67 68
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
69
    auto &ref_out = ref_outputs[i];
70 71
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
72
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
        }
        break;
      }
L
luotao1 已提交
92 93 94 95
    }
  }
}

96
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
97
    const PaddlePredictor::Config *config, bool use_analysis = true) {
T
Tao Luo 已提交
98
  if (use_analysis) {
99 100
    return CreatePaddlePredictor<contrib::AnalysisConfig>(
        *(reinterpret_cast<const contrib::AnalysisConfig *>(config)));
T
Tao Luo 已提交
101
  }
102 103
  return CreatePaddlePredictor<NativeConfig>(
      *(reinterpret_cast<const NativeConfig *>(config)));
T
Tao Luo 已提交
104 105
}

106
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
107

108
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
109
                                                   int *num_ops) {
110
  std::unordered_map<std::string, int> res;
111
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
112 113 114 115 116 117
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
118 119 120 121
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
122 123
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
124 125 126 127
      ++num;
    }
  }
  *num_ops = num;
128
  return *fusion_status;
T
Tao Luo 已提交
129 130
}

T
Tao Luo 已提交
131
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
132 133 134
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
                       std::string params_filename = "params") {
T
Tao Luo 已提交
135 136
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
137 138 139 140 141 142 143 144 145 146 147 148
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();

T
Tao Luo 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  int dim1 = feed_target_shapes[0][1];
  int dim2 = feed_target_shapes[0][2];
  int dim3 = feed_target_shapes[0][3];

  PaddleTensor input;
  std::vector<int> shape({FLAGS_batch_size, dim1, dim2, dim3});
  input.shape = shape;
  input.dtype = PaddleDType::FLOAT32;

  // fill input data, for profile easily, do not use random data here.
  size_t size = FLAGS_batch_size * dim1 * dim2 * dim3;
  input.data.Resize(size * sizeof(float));
  float *input_data = static_cast<float *>(input.data.data());
  for (size_t i = 0; i < size; i++) {
    *(input_data + i) = static_cast<float>(i) / size;
  }

  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}

L
luotao1 已提交
171
void TestOneThreadPrediction(
172
    const PaddlePredictor::Config *config,
173
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
174
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
175 176
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
177
  auto predictor = CreateTestPredictor(config, use_analysis);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
199
    }
N
nhzlx 已提交
200 201 202 203 204 205 206 207 208 209

    double latency = run_timer.toc() / num_times;
    PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
    if (FLAGS_record_benchmark) {
      Benchmark benchmark;
      benchmark.SetName(FLAGS_model_name);
      benchmark.SetBatchSize(batch_size);
      benchmark.SetLatency(latency);
      benchmark.PersistToFile("benchmark_record.txt");
    }
L
luotao1 已提交
210 211 212 213
  }
}

void TestMultiThreadPrediction(
214
    const PaddlePredictor::Config *config,
215
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
216 217
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
218 219 220
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
221
  auto main_predictor = CreateTestPredictor(config, use_analysis);
222 223

  size_t total_time{0};
L
luotao1 已提交
224 225 226 227 228
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
229 230 231
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
232 233 234
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
235
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
236 237
      }
#endif
T
Tao Luo 已提交
238 239 240 241 242 243 244 245 246 247

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
248 249
        }
      }
250

T
Tao Luo 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
266 267 268 269 270 271 272
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

273
void TestPrediction(const PaddlePredictor::Config *config,
274
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
275 276
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
277
  PrintConfig(config, use_analysis);
L
luotao1 已提交
278
  if (num_threads == 1) {
T
Tao Luo 已提交
279
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
280
  } else {
T
Tao Luo 已提交
281 282
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
283 284 285
  }
}

T
Tao Luo 已提交
286
void CompareNativeAndAnalysis(
287
    const PaddlePredictor::Config *config,
288
    const std::vector<std::vector<PaddleTensor>> &inputs) {
289
  PrintConfig(config, true);
T
Tao Luo 已提交
290 291 292 293 294 295
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
377
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
378 379 380 381 382 383 384 385
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
386
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
418 419
}  // namespace inference
}  // namespace paddle