detection_predictor.cpp 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "detection_predictor.h"
#include <cstring>
#include <cmath>
#include <fstream>
#include "utils/detection_result.pb.h"
20
#undef min
21 22 23 24 25

namespace PaddleSolution {
    /* lod_buffer: every item in lod_buffer is an image matrix after preprocessing
     * input_buffer: same data with lod_buffer after flattening to 1-D vector and padding, needed to be empty before using this function
     */
26 27 28 29 30
    void padding_minibatch(const std::vector<std::vector<float>> &lod_buffer,
                           std::vector<float> &input_buffer,
                           std::vector<int> &resize_heights,
                           std::vector<int> &resize_widths,
                           int channels, int coarsest_stride = 1) {
31 32 33
        int batch_size = lod_buffer.size();
        int max_h = -1;
        int max_w = -1;
34
        for (int i = 0; i < batch_size; ++i) {
35 36 37
            max_h = (max_h > resize_heights[i])? max_h:resize_heights[i];
            max_w = (max_w > resize_widths[i])? max_w:resize_widths[i];
        }
38 39 40 41
        max_h = static_cast<int>(ceil(static_cast<float>(max_h)
              / static_cast<float>(coarsest_stride)) * coarsest_stride);
        max_w = static_cast<int>(ceil(static_cast<float>(max_w)
              / static_cast<float>(coarsest_stride)) * coarsest_stride);
42
        std::cout << "max_w: " << max_w << " max_h: " << max_h << std::endl;
43 44
        input_buffer.insert(input_buffer.end(),
                            batch_size * channels * max_h * max_w, 0);
45
        // flatten tensor and padding
46 47 48
        for (int i = 0; i < lod_buffer.size(); ++i) {
            float *input_buffer_ptr = input_buffer.data()
                                    + i * channels * max_h * max_w;
49
            const float *lod_ptr = lod_buffer[i].data();
50 51 52 53
            for (int c = 0; c < channels; ++c) {
                for (int h = 0; h < resize_heights[i]; ++h) {
                    memcpy(input_buffer_ptr, lod_ptr,
                           resize_widths[i] * sizeof(float));
54 55 56 57 58 59 60
                    lod_ptr += resize_widths[i];
                    input_buffer_ptr += max_w;
                }
                input_buffer_ptr += (max_h - resize_heights[i]) * max_w;
            }
        }
        // change resize w, h
61
        for (int i = 0; i < batch_size; ++i) {
62 63 64 65 66
            resize_widths[i] = max_w;
            resize_heights[i] = max_h;
        }
    }

67 68 69 70
    void output_detection_result(const float* out_addr,
                             const std::vector<std::vector<size_t>> &lod_vector,
                             const std::vector<std::string> &imgs_batch) {
        for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
71 72 73 74 75
            DetectionResult detection_result;
            detection_result.set_filename(imgs_batch[i]);
            std::cout << imgs_batch[i] << ":" << std::endl;
            for (int j = lod_vector[0][i]; j < lod_vector[0][i+1]; ++j) {
                DetectionBox *box_ptr = detection_result.add_detection_boxes();
76 77
                box_ptr->set_class_(
                         static_cast<int>(round(out_addr[0 + j * 6])));
78 79 80 81 82 83
                box_ptr->set_score(out_addr[1 + j * 6]);
                box_ptr->set_left_top_x(out_addr[2 + j * 6]);
                box_ptr->set_left_top_y(out_addr[3 + j * 6]);
                box_ptr->set_right_bottom_x(out_addr[4 + j * 6]);
                box_ptr->set_right_bottom_y(out_addr[5 + j * 6]);
                printf("Class %d, score = %f, left top = [%f, %f], right bottom = [%f, %f]\n",
84 85 86 87 88 89
                        static_cast<int>(round(out_addr[0 + j * 6])),
                        out_addr[1 + j * 6],
                        out_addr[2 + j * 6],
                        out_addr[3 + j * 6],
                        out_addr[4 + j * 6],
                        out_addr[5 + j * 6]);
90 91
            }
            printf("\n");
92 93
            std::ofstream output(imgs_batch[i] + ".pb",
                    std::ios::out | std::ios::trunc | std::ios::binary);
94 95 96 97
            detection_result.SerializeToOstream(&output);
            output.close();
        }
    }
98

99 100
    int DetectionPredictor::init(const std::string& conf) {
        if (!_model_config.load_config(conf)) {
101 102 103 104 105 106 107 108
        #ifdef _WIN32
            std::cerr << "Fail to load config file: [" << conf << "], " 
                      << "please check whether the config file path is correct"
                      << std::endl;
        #else
            LOG(FATAL) << "Fail to load config file: [" << conf << "], "
                      << "please check whether the config file path is correct";
        #endif
109 110 111 112
            return -1;
        }
        _preprocessor = PaddleSolution::create_processor(conf);
        if (_preprocessor == nullptr) {
113 114 115 116 117 118 119
        #ifdef _WIN32
            std::cerr << "Failed to create_processor, please check whether you"
                      << " write a correct config file." << std::endl;
        #else
            LOG(FATAL) << "Failed to create_processor, please check whether"
                      << " you write a correct config file.";
        #endif
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
            return -1;
        }

        bool use_gpu = _model_config._use_gpu;
        const auto& model_dir = _model_config._model_path;
        const auto& model_filename = _model_config._model_file_name;
        const auto& params_filename = _model_config._param_file_name;

        // load paddle model file
        if (_model_config._predictor_mode == "NATIVE") {
            paddle::NativeConfig config;
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.prog_file = prog_file;
            config.param_file = param_file;
            config.fraction_of_gpu_memory = 0;
            config.use_gpu = use_gpu;
            config.device = 0;
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else if (_model_config._predictor_mode == "ANALYSIS") {
            paddle::AnalysisConfig config;
            if (use_gpu) {
                config.EnableUseGpu(100, 0);
            }
            auto prog_file = utils::path_join(model_dir, model_filename);
            auto param_file = utils::path_join(model_dir, params_filename);
            config.SetModel(prog_file, param_file);
            config.SwitchUseFeedFetchOps(false);
            config.SwitchSpecifyInputNames(true);
149 150 151
            config.EnableMemoryOptim();
            // config.SwitchIrOptim(true);
            // config.EnableTensorRtEngine(1<<4, 30, 3);
152 153 154 155 156 157 158 159
            _main_predictor = paddle::CreatePaddlePredictor(config);
        } else {
            return -1;
        }
        return 0;
    }

    int DetectionPredictor::predict(const std::vector<std::string>& imgs) {
160 161 162 163 164 165 166 167 168 169 170 171
        if (imgs.size() == 0) {
        #ifdef _WIN32
            std::cerr << "No image found! Please check whether the images path"
                      << " is correct or the format of images is correct\n"
                      << "Supporting format: [.jpeg|.jpg|.JPEG|.JPG|.bmp|.BMP|.png|.PNG]" << std::endl;
        #else
            LOG(ERROR) << "No image found! Please check whether the images path"
                       << " is correct or the format of images is correct\n"
                       << "Supporting format: [.jpeg|.jpg|.JPEG|.JPG|.bmp|.BMP|.png|.PNG]";
        #endif
            return -1;
        }
172 173
        if (_model_config._predictor_mode == "NATIVE") {
            return native_predict(imgs);
174
        } else if (_model_config._predictor_mode == "ANALYSIS") {
175 176 177 178 179 180 181 182 183 184 185 186
            return analysis_predict(imgs);
        }
        return -1;
    }

    int DetectionPredictor::native_predict(const std::vector<std::string>& imgs) {
        int config_batch_size = _model_config._batch_size;

        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        std::size_t total_size = imgs.size();
187 188 189 190 191 192
        int default_batch_size = std::min(config_batch_size,
                                          static_cast<int>(total_size));
        int batch = total_size / default_batch_size +
                    ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels
                              * eval_width * eval_height;
193 194 195 196 197 198 199 200 201 202

        auto& input_buffer = _buffer;
        auto& imgs_batch = _imgs_batch;
        float sr;
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
            }

203 204
            int real_buffer_size = batch_size * channels
                                 * eval_width * eval_height;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            std::vector<paddle::PaddleTensor> feeds;
            input_buffer.clear();
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
            std::vector<int> ori_widths;
            std::vector<int> ori_heights;
            std::vector<int> resize_widths;
            std::vector<int> resize_heights;
            std::vector<float> scale_ratios;
            ori_widths.resize(batch_size);
            ori_heights.resize(batch_size);
            resize_widths.resize(batch_size);
            resize_heights.resize(batch_size);
            scale_ratios.resize(batch_size);
            std::vector<std::vector<float>> lod_buffer(batch_size);
223 224 225 226 227 228
            if (!_preprocessor->batch_process(imgs_batch, lod_buffer,
                                              ori_widths.data(),
                                              ori_heights.data(),
                                              resize_widths.data(),
                                              resize_heights.data(),
                                              scale_ratios.data())) {
229 230
                return -1;
            }
231 232 233 234
            // flatten and padding
            padding_minibatch(lod_buffer, input_buffer, resize_heights,
                              resize_widths, channels,
                              _model_config._coarsest_stride);
235 236 237
            paddle::PaddleTensor im_tensor, im_size_tensor, im_info_tensor;

            im_tensor.name = "image";
238 239 240 241 242 243
            im_tensor.shape = std::vector<int>({ batch_size,
                                                 channels,
                                                 resize_heights[0],
                                                 resize_widths[0] });
            im_tensor.data.Reset(input_buffer.data(),
                                 input_buffer.size() * sizeof(float));
244
            im_tensor.dtype = paddle::PaddleDType::FLOAT32;
245

246
            std::vector<float> image_infos;
247
            for (int i = 0; i < batch_size; ++i) {
248 249 250 251 252 253
                image_infos.push_back(resize_heights[i]);
                image_infos.push_back(resize_widths[i]);
                image_infos.push_back(scale_ratios[i]);
            }
            im_info_tensor.name = "info";
            im_info_tensor.shape = std::vector<int>({batch_size, 3});
254 255
            im_info_tensor.data.Reset(image_infos.data(),
                                      batch_size * 3 * sizeof(float));
256
            im_info_tensor.dtype = paddle::PaddleDType::FLOAT32;
257

258
            std::vector<int> image_size;
259
            for (int i = 0; i < batch_size; ++i) {
260 261 262 263 264
                image_size.push_back(ori_heights[i]);
                image_size.push_back(ori_widths[i]);
            }

           std::vector<float> image_size_f;
265
           for (int i = 0; i < batch_size; ++i) {
266 267 268 269
               image_size_f.push_back(ori_heights[i]);
               image_size_f.push_back(ori_widths[i]);
               image_size_f.push_back(1.0);
           }
270

271 272
           int feeds_size = _model_config._feeds_size;
           im_size_tensor.name = "im_size";
273
           if (feeds_size == 2) {
274
                im_size_tensor.shape = std::vector<int>({ batch_size, 2});
275 276
                im_size_tensor.data.Reset(image_size.data(),
                                          batch_size * 2 * sizeof(int));
277
                im_size_tensor.dtype = paddle::PaddleDType::INT32;
278
           } else if (feeds_size == 3) {
279
                im_size_tensor.shape = std::vector<int>({ batch_size, 3});
280 281
                im_size_tensor.data.Reset(image_size_f.data(),
                                          batch_size * 3 * sizeof(float));
282 283 284 285
                im_size_tensor.dtype = paddle::PaddleDType::FLOAT32;
           }
           std::cout << "Feed size = " << feeds_size << std::endl;
           feeds.push_back(im_tensor);
286
           if (_model_config._feeds_size > 2) {
287 288 289 290 291 292 293
                feeds.push_back(im_info_tensor);
           }
           feeds.push_back(im_size_tensor);
           _outputs.clear();

            auto t1 = std::chrono::high_resolution_clock::now();
            if (!_main_predictor->Run(feeds, &_outputs, batch_size)) {
294 295 296
            #ifdef _WIN32
                std::cerr << "Failed: NativePredictor->Run() return false at batch: " << u;
            #else            
297
                LOG(ERROR) << "Failed: NativePredictor->Run() return false at batch: " << u;
298
            #endif
299 300 301 302 303 304 305 306 307 308 309 310 311 312
                continue;
            }
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;
            std::cout << "Number of outputs:"  << _outputs.size() << std::endl;
            int out_num = 1;
            // print shape of first output tensor for debugging
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < _outputs[0].shape.size(); ++j) {
                out_num *= _outputs[0].shape[j];
                std::cout << _outputs[0].shape[j] << ",";
            }
            std::cout << ")" << std::endl;
313

314 315 316 317 318
        //    const size_t nums = _outputs.front().data.length() / sizeof(float);
        //    if (out_num % batch_size != 0 || out_num != nums) {
        //        LOG(ERROR) << "outputs data size mismatch with shape size.";
        //        return -1;
        //    }
319
            float* out_addr = reinterpret_cast<float *>(_outputs[0].data.data());
320 321 322 323 324
            output_detection_result(out_addr, _outputs[0].lod, imgs_batch);
        }
        return 0;
    }

325 326
    int DetectionPredictor::analysis_predict(
                const std::vector<std::string>& imgs) {
327 328 329 330 331
        int config_batch_size = _model_config._batch_size;
        int channels = _model_config._channels;
        int eval_width = _model_config._resize[0];
        int eval_height = _model_config._resize[1];
        auto total_size = imgs.size();
332 333 334 335 336 337
        int default_batch_size = std::min(config_batch_size,
                                          static_cast<int>(total_size));
        int batch = total_size / default_batch_size
                + ((total_size % default_batch_size) != 0);
        int batch_buffer_size = default_batch_size * channels
                              * eval_width * eval_height;
338 339 340 341 342 343 344 345 346

        auto& input_buffer = _buffer;
        auto& imgs_batch = _imgs_batch;
        for (int u = 0; u < batch; ++u) {
            int batch_size = default_batch_size;
            if (u == (batch - 1) && (total_size % default_batch_size)) {
                batch_size = total_size % default_batch_size;
            }

347 348
            int real_buffer_size = batch_size * channels *
                                   eval_width * eval_height;
349
            std::vector<paddle::PaddleTensor> feeds;
350
            // input_buffer.resize(real_buffer_size);
351 352 353 354 355 356
            input_buffer.clear();
            imgs_batch.clear();
            for (int i = 0; i < batch_size; ++i) {
                int idx = u * default_batch_size + i;
                imgs_batch.push_back(imgs[idx]);
            }
357

358 359 360 361 362 363 364 365 366 367
            std::vector<int> ori_widths;
            std::vector<int> ori_heights;
            std::vector<int> resize_widths;
            std::vector<int> resize_heights;
            std::vector<float> scale_ratios;
            ori_widths.resize(batch_size);
            ori_heights.resize(batch_size);
            resize_widths.resize(batch_size);
            resize_heights.resize(batch_size);
            scale_ratios.resize(batch_size);
368

369
            std::vector<std::vector<float>> lod_buffer(batch_size);
370 371 372 373 374 375
            if (!_preprocessor->batch_process(imgs_batch, lod_buffer,
                                              ori_widths.data(),
                                              ori_heights.data(),
                                              resize_widths.data(),
                                              resize_heights.data(),
                                              scale_ratios.data())) {
376 377 378 379
                std::cout << "Failed to preprocess!" << std::endl;
                return -1;
            }

380 381 382 383
            // flatten tensor
            padding_minibatch(lod_buffer, input_buffer, resize_heights,
                              resize_widths, channels,
                              _model_config._coarsest_stride);
384 385

            std::vector<std::string> input_names = _main_predictor->GetInputNames();
386 387 388 389
            auto im_tensor = _main_predictor->GetInputTensor(
                                              input_names.front());
            im_tensor->Reshape({ batch_size, channels,
                                resize_heights[0], resize_widths[0] });
390
            im_tensor->copy_from_cpu(input_buffer.data());
391 392

            if (input_names.size() > 2) {
393
                std::vector<float> image_infos;
394
                for (int i = 0; i < batch_size; ++i) {
395 396 397
                    image_infos.push_back(resize_heights[i]);
                    image_infos.push_back(resize_widths[i]);
                    image_infos.push_back(scale_ratios[i]);
398 399 400
                }
                auto im_info_tensor = _main_predictor->GetInputTensor(
                                      input_names[1]);
401 402 403 404 405
                im_info_tensor->Reshape({batch_size, 3});
                im_info_tensor->copy_from_cpu(image_infos.data());
            }

            std::vector<int> image_size;
406
            for (int i = 0; i < batch_size; ++i) {
407 408 409 410
                image_size.push_back(ori_heights[i]);
                image_size.push_back(ori_widths[i]);
            }
            std::vector<float> image_size_f;
411
            for (int i = 0; i < batch_size; ++i) {
412 413 414 415
                image_size_f.push_back(static_cast<float>(ori_heights[i]));
                image_size_f.push_back(static_cast<float>(ori_widths[i]));
                image_size_f.push_back(1.0);
            }
416 417 418 419

            auto im_size_tensor = _main_predictor->GetInputTensor(
                                                    input_names.back());
            if (input_names.size() > 2) {
420 421
                im_size_tensor->Reshape({batch_size, 3});
                im_size_tensor->copy_from_cpu(image_size_f.data());
422
            } else {
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                im_size_tensor->Reshape({batch_size, 2});
                im_size_tensor->copy_from_cpu(image_size.data());
            }

            auto t1 = std::chrono::high_resolution_clock::now();
            _main_predictor->ZeroCopyRun();
            auto t2 = std::chrono::high_resolution_clock::now();
            auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
            std::cout << "runtime = " << duration << std::endl;

            auto output_names = _main_predictor->GetOutputNames();
            auto output_t = _main_predictor->GetOutputTensor(output_names[0]);
            std::vector<float> out_data;
            std::vector<int> output_shape = output_t->shape();

            int out_num = 1;
            std::cout << "size of outputs[" << 0 << "]: (";
            for (int j = 0; j < output_shape.size(); ++j) {
                out_num *= output_shape[j];
                std::cout << output_shape[j] << ",";
            }
            std::cout << ")" << std::endl;

            out_data.resize(out_num);
            output_t->copy_to_cpu(out_data.data());

449
            float* out_addr = reinterpret_cast<float *>(out_data.data());
450
            auto lod_vector = output_t->lod();
451
            output_detection_result(out_addr, lod_vector, imgs_batch);
452 453 454
        }
        return 0;
    }
455
}  // namespace PaddleSolution