test_ConvTrans.cpp 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
Y
Yu Yang 已提交
17
#include <vector>
18
#include "ModelConfig.pb.h"
X
Xin Pan 已提交
19
#include "paddle/legacy/gserver/layers/DataLayer.h"
X
Xin Pan 已提交
20
#include "paddle/legacy/math/MathUtils.h"
Y
Yu Yang 已提交
21
#include "paddle/utils/GlobalConstants.h"
22 23

#include "LayerGradUtil.h"
24
#include "paddle/testing/TestUtil.h"
25 26 27 28

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

29 30 31 32 33
DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_double(checkgrad_eps);
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(prev_batch_state);
34

35
// Test that the convTrans forward is the same as conv backward
36
TEST(Layer, convTransLayerFwd) {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  // Setting up conv-trans layer
  TestConfig configt;
  configt.biasSize = 3;
  configt.layerConfig.set_type("exconvt");
  configt.layerConfig.set_num_filters(3);
  configt.layerConfig.set_partial_sum(1);
  configt.layerConfig.set_shared_biases(true);

  configt.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 384});
  LayerInputConfig* input = configt.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(4);
  conv->set_channels(16);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(3 / conv->groups());
  conv->set_img_size(16);
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
                                /* caffeMode */ true));
  configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                               configt.layerConfig.num_filters());
  configt.layerConfig.set_name("convTrans");

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      configt, &dataLayers, &datas, &layerMap, "convTrans", 100, false, false);
  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr convtLayer;
  initTestLayer(configt, &layerMap, &parameters, &convtLayer);
  convtLayer->getBiasParameter()->zeroMem();
  convtLayer->forward(PASS_GC);

  // Setting up conv-layer config
  TestConfig config;
  config.biasSize = 16;
  config.layerConfig.set_type("exconv");
  config.layerConfig.set_num_filters(16);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  config.inputDefs.push_back({INPUT_DATA, "layer_1", 768, 384});
  input = config.layerConfig.add_inputs();
  conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(4);
  conv->set_channels(3);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(16);
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
                                /* caffeMode */ true));
  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                              config.layerConfig.num_filters());
  config.layerConfig.set_name("conv");

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers2;
  LayerMap layerMap2;
  vector<Argument> datas2;
  initDataLayer(
      config, &dataLayers2, &datas2, &layerMap2, "conv", 100, false, false);
  // test layer initialize
  std::vector<ParameterPtr> parameters2;
  LayerPtr convLayer;
  initTestLayer(config, &layerMap2, &parameters2, &convLayer);

  // Sync convLayer and convtLayer parameter
  convLayer->getBiasParameter()->zeroMem();
  convLayer->getParameters()[0]
      ->getBuf(PARAMETER_VALUE)
      ->copyFrom(*(convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)));

  // Set convLayer outputGrad as convTransLayer input value
  convLayer->forward(PASS_GC);
  convLayer->getOutput().grad->copyFrom(*(dataLayers[0]->getOutputValue()));

  vector<int> callbackFlags(parameters2.size(), 0);
  auto callback = [&](Parameter* para) { ++callbackFlags[para->getID()]; };
  convLayer->backward(callback);

  // Check that the convLayer backward is the same as convTransLayer forward
  checkMatrixEqual(convtLayer->getOutputValue(),
                   dataLayers2[0]->getOutputGrad());
138 139
}

140 141
// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
void doOneConvtTest(size_t imgSize,
                    size_t output_x,
                    size_t stride,
                    size_t padding,
                    size_t filter_size,
                    MatrixPtr& result) {
  TestConfig configt;
  configt.biasSize = 1;
  configt.layerConfig.set_type("exconvt");
  configt.layerConfig.set_num_filters(1);
  configt.layerConfig.set_partial_sum(1);
  configt.layerConfig.set_shared_biases(true);

  configt.inputDefs.push_back(
      {INPUT_DATA, "layer_0", output_x * output_x, filter_size * filter_size});
  LayerInputConfig* input = configt.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(filter_size);
  conv->set_filter_size_y(filter_size);
  conv->set_channels(1);
  conv->set_padding(padding);
  conv->set_padding_y(padding);
  conv->set_stride(stride);
  conv->set_stride_y(stride);
  conv->set_groups(1);
  conv->set_filter_channels(1);
  conv->set_img_size(imgSize);
  conv->set_output_x(output_x);

  configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                               configt.layerConfig.num_filters());
  configt.layerConfig.set_name("convTrans");

  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      configt, &dataLayers, &datas, &layerMap, "convTrans", 1, false, false);
  dataLayers[0]->getOutputValue()->zeroMem();
  dataLayers[0]->getOutputValue()->add(1.0);

  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr convtLayer;
  initTestLayer(configt, &layerMap, &parameters, &convtLayer);
  convtLayer->getBiasParameter()->zeroMem();
  convtLayer->getParameters()[0]->zeroMem();
  convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->add(1.0);
  convtLayer->forward(PASS_GC);

  checkMatrixEqual(convtLayer->getOutputValue(), result);
193 194 195
}

TEST(Layer, convTransLayerFwd2) {
196 197 198 199 200 201 202 203 204 205 206
  MatrixPtr result;
  result = Matrix::create(1, 5 * 5, false, false);
  result->zeroMem();
  result->add(1.0);
  doOneConvtTest(/* imgSize */ 5,
                 /* output_x */ 1,
                 /* stride */ 1,
                 /* padding */ 0,
                 /* filter_size */ 5,
                 result);

P
Peng Li 已提交
207 208
  real resultData[] = {1, 2, 2, 2, 1, 2, 4, 4, 4, 2, 2, 4, 4,
                       4, 2, 2, 4, 4, 4, 2, 1, 2, 2, 2, 1};
209 210 211 212 213 214 215 216
  result->setData(resultData);
  doOneConvtTest(/* imgSize */ 5,
                 /* output_x */ 2,
                 /* stride */ 1,
                 /* padding */ 0,
                 /* filter_size */ 4,
                 result);

P
Peng Li 已提交
217 218
  real resultData2[] = {1, 2, 2, 2, 1, 2, 4, 4, 4, 2, 2, 4, 4,
                        4, 2, 2, 4, 4, 4, 2, 1, 2, 2, 2, 1};
219 220 221 222 223 224 225 226
  result->setData(resultData2);
  doOneConvtTest(/* imgSize */ 5,
                 /* output_x */ 2,
                 /* stride */ 2,
                 /* padding */ 1,
                 /* filter_size */ 5,
                 result);

P
Peng Li 已提交
227 228
  real resultData3[] = {1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4,
                        2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1};
229 230 231 232 233 234 235 236
  result->setData(resultData3);
  doOneConvtTest(/* imgSize */ 5,
                 /* output_x */ 2,
                 /* stride */ 2,
                 /* padding */ 0,
                 /* filter_size */ 3,
                 result);
}
237

238 239 240 241 242 243 244
int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}