Parameter.cpp 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "Parameter.h"
L
liaogang 已提交
16
#include <gflags/gflags.h>
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23
#include <fstream>
#include "AverageOptimizer.h"
#include "FirstOrderOptimizer.h"
#include "OptimizerFunctions.h"
#include "OptimizerWithRegularizer.h"
#include "ParameterUpdateFunctions.h"
#include "hl_gpu.h"
Y
Yu Yang 已提交
24 25 26 27
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/SparseRowMatrix.h"
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
28

29 30 31 32 33
DEFINE_int32(enable_grad_share,
             (100 * 1024 * 1024),
             "threshold for enable gradient parameter share for batch "
             "multi-cpu training");
DEFINE_int32(
34 35
    grad_share_block_num,
    64,
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    "block number of gradient parameter share for batch multi-cpu training");

namespace paddle {

const std::string Parameter::kMissParameterFail = "fail";
const std::string Parameter::kMissParameterRand = "rand";
const std::string Parameter::kMissParameterZero = "zero";

Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
    : config_(config),
      useGpu_(useGpu),
      deviceId_(-1),
      sharedCount_(0),
      updateCounter_(0),
      updated_(false) {
  setID(-1); /* capture uninitialized id */
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  if (doInit) {
    initialize();
  }

  for (int i = 0; i < config.update_hooks_size(); ++i) {
    this->updaterHooks_.push_back(IParameterUpdaterHook::create(config, i));
  }
}

void Parameter::initialize() {
  SetDevice device(deviceId_);

  bufs_[PARAMETER_VALUE] =
      Vector::createParallelVector(config_.size(), useGpu_);
  bufs_[PARAMETER_VALUE]->zeroMem();

  if (config_.is_sparse()) {
    enableSparseParameter();
  }

  if (!isStatic()) {
    bufs_[PARAMETER_GRADIENT] =
        Vector::createParallelVector(config_.size(), useGpu_);
    bufs_[PARAMETER_MOMENTUM] =
        Vector::createParallelVector(config_.size(), useGpu_);

    bufs_[PARAMETER_GRADIENT]->zeroMem();
    bufs_[PARAMETER_MOMENTUM]->zeroMem();
  }
}

void Parameter::randomize(const VectorPtr& value,
                          const ParameterConfig& config) {
  if (PARAMETER_INIT_UNIFORM == config.initial_strategy()) {
    // initialize the parameter as uniform distribution
    real initial_min = config.initial_mean() - config.initial_std();
    real initial_max = config.initial_mean() + config.initial_std();
    value->uniform(initial_min, initial_max);
    VLOG(1) << config.name() << ": initial_min=" << initial_min
99
            << ", initial_max=" << initial_max;
Z
zhangjinchao01 已提交
100 101 102
  } else if (PARAMETER_INIT_NORMAL == config.initial_strategy()) {
    /* Initialize the parameters randomly */
    value->randnorm(config.initial_mean(), config.initial_std());
103 104
    VLOG(1) << config.name() << ": initial_mean=" << config.initial_mean()
            << ", initial_std=" << config.initial_std();
Z
zhangjinchao01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
  } else {
    LOG(FATAL) << "not supported initial_strategy: "
               << config.initial_strategy();
  }
}

void Parameter::randomize() {
  if (!bufs_[PARAMETER_VALUE]) return;
  SetDevice device(deviceId_);
  Parameter::randomize(bufs_[PARAMETER_VALUE], config_);

  if (config_.is_sparse()) {
    if (format_ == SPARSE_CSC) {
      sparseRand(intBufs_[PARAMETER_COLS]->getData(),
119 120 121 122 123
                 intBufs_[PARAMETER_ROWS]->getData(),
                 config_.size(),
                 config_.dims(1) + 1,
                 config_.dims(0),
                 useGpu_);
Z
zhangjinchao01 已提交
124 125
    } else {
      sparseRand(intBufs_[PARAMETER_ROWS]->getData(),
126 127 128 129 130
                 intBufs_[PARAMETER_COLS]->getData(),
                 config_.size(),
                 config_.dims(0) + 1,
                 config_.dims(1),
                 useGpu_);
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    }
  }
  setValueUpdated();
}

void Parameter::zeroMem() {
  if (!bufs_[PARAMETER_VALUE]) return;
  bufs_[PARAMETER_VALUE]->zeroMem();
  setValueUpdated();
  LOG(INFO) << getName() << " set to 0";
}

bool Parameter::isGradShared(size_t* blockNum) {
  if (!useGpu_ && !isStatic() && FLAGS_enable_grad_share > 0 &&
      !isGradSparseUpdate() &&
      this->getSize() > (size_t)FLAGS_enable_grad_share) {
    if (blockNum) {
      *blockNum = (size_t)FLAGS_grad_share_block_num;
    }
    return true;
  }
  return false;
}

bool Parameter::isValueShared() {
  return !useGpu_ && config_.is_shared() && FLAGS_trainer_count > 1;
}

bool Parameter::isGradSparseUpdate() const {
  return !useGpu_ && !isStatic() &&
161
         (config_.sparse_update() || config_.sparse_remote_update());
Z
zhangjinchao01 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

void Parameter::setMat(ParameterType pType, int matType) {
  CHECK(!mats_[pType]);

  if (config_.dims_size() == 0 && matType == MAT_NORMAL) {
    return;
  }

  CHECK_EQ((size_t)config_.dims_size(), 2LU);
  size_t height = config_.dims(0);
  size_t width = config_.dims(1);
  if (matType == MAT_NORMAL) {
    if (!config_.is_sparse()) {
      CHECK_EQ(height * width, bufs_[pType]->getSize());
      mats_[pType] =
          Matrix::create(bufs_[pType]->getMemoryHandle(), height, width);
    } else {
      size_t size = bufs_[pType]->getSize();
      CHECK_GE(height * width, size);
      if (format_ == SPARSE_CSR) {
        CHECK_EQ(height + 1, intBufs_[PARAMETER_ROWS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_COLS]->getSize());
      } else {
        CHECK_EQ(width + 1, intBufs_[PARAMETER_COLS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_ROWS]->getSize());
      }
189 190 191 192 193 194 195 196 197 198 199
      mats_[pType] =
          Matrix::createSparseMatrix(bufs_[pType]->getData(),
                                     intBufs_[PARAMETER_ROWS]->getData(),
                                     intBufs_[PARAMETER_COLS]->getData(),
                                     height,
                                     width,
                                     bufs_[pType]->getSize(),
                                     FLOAT_VALUE,
                                     format_,
                                     false,
                                     useGpu_);
Z
zhangjinchao01 已提交
200 201 202 203 204 205
    }
  } else if (matType == MAT_NORMAL_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    size_t blockNum = 0;
    CHECK(isGradShared(&blockNum));
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
206 207 208 209 210
        blockNum,
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
Z
zhangjinchao01 已提交
211 212 213 214
  } else if (matType == MAT_VALUE_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
215 216 217
            bufs_[pType]->getMemoryHandle()),
        height,
        width);
Z
zhangjinchao01 已提交
218 219 220 221 222
  } else if (matType == MAT_SPARSE_ROW_IDS) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SparseRowIdsCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
223 224
        height,
        width);
Z
zhangjinchao01 已提交
225 226 227 228 229 230 231 232 233 234
  } else if (matType == MAT_SPARSE_ROW) {
    auto valueMat =
        std::dynamic_pointer_cast<SparseRowCpuMatrix>(mats_[PARAMETER_VALUE]);
    SparseRowCpuMatrix::IndexDictPtr indexDict(nullptr);
    if (pType != PARAMETER_VALUE) {
      CHECK(valueMat) << "The matrix for PARAMETER_VALUE must be set "
                      << " and its type must be MAT_SPARSE_ROW,"
                      << " MAT_SPARSE_ROW_PREFETCH or MAT_CACHE_ROW";
      indexDict = valueMat->getIndexDictHandle();
    }
235 236 237 238 239 240
    auto mat =
        std::make_shared<SparseRowCpuMatrix>(nullptr,
                                             height,
                                             width,
                                             // grad share index with value
                                             indexDict);
Z
zhangjinchao01 已提交
241 242 243
    mats_[pType] = mat;
  } else if (matType == MAT_CACHE_ROW) {
    CHECK(isGradSparseUpdate());
244
    auto mat = std::make_shared<CacheRowCpuMatrix>(height, width);
Z
zhangjinchao01 已提交
245 246 247 248 249
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_PREFETCH_FULL_SIZE ||
             matType == MAT_SPARSE_ROW_PREFETCH) {
    auto mat = std::make_shared<SparsePrefetchRowCpuMatrix>(
        bufs_[pType] ? std::dynamic_pointer_cast<CpuMemoryHandle>(
250 251 252 253
                           bufs_[pType]->getMemoryHandle())
                     : nullptr,
        height,
        width,
Z
zhangjinchao01 已提交
254 255 256 257 258
        nullptr,  // indexDictHandle
        getGlobalSyncThreadPool());
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_AUTO_GROW) {
    CHECK(isGradSparseUpdate());
259
    mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(height, width);
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  } else {
    LOG(FATAL) << "Unsupported mat type" << matType;
  }
}

SparsePrefetchRowCpuMatrix* Parameter::getPrefetchMatrix() {
  MatrixPtr mat = mats_[PARAMETER_VALUE];
  if (mat) {
    return dynamic_cast<SparsePrefetchRowCpuMatrix*>(mat.get());
  }

  return nullptr;
}

void Parameter::incUpdate(const UpdateCallback& callback) {
  // Static parameter is fixed, and does not need to be updated
  if (isStatic()) {
    return;
  }

  ++updateCounter_;
  if (isUpdatable()) {
    if (callback) callback(this);
    clearUpdate();
  }
}

bool Parameter::save(const std::string& filename) const {
  std::ofstream fs(filename, std::ios_base::binary);
  CHECK(fs) << "Fail to open " << filename;
  return save(fs);
}

bool Parameter::save(std::ostream& s) const {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  header.version = kFormatVersion;
  header.valueSize = sizeof(real);
  header.size = getSize();

  CHECK_EQ(header.size, vec.getSize());

  CHECK(s.write(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to write parameter " << getName();

  CHECK(s.write(reinterpret_cast<char*>(vec.getData()),
                header.size * sizeof(real)))
      << "Fail to write parameter " << getName();
  if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    CHECK(s.write(reinterpret_cast<char*>(rows.getData()),
                  rows.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
    CHECK(s.write(reinterpret_cast<char*>(cols.getData()),
                  cols.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
  }

  return true;
}

/**
 * Load parameter value from a file
 */
bool Parameter::load(const std::string& filename) {
  std::ifstream fs(filename, std::ios_base::binary);
  if (!fs) {
    LOG(INFO) << "missing parameters [" << filename << "] while loading model.";
    if (kMissParameterFail == FLAGS_load_missing_parameter_strategy) {
      LOG(FATAL) << getName() << " missing, not allowed.";
      return false;
    }
    if (kMissParameterRand == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to random.";
      randomize();
      return true;
    }
    if (kMissParameterZero == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to zero.";
      zeroMem();
      return true;
    }
    LOG(FATAL) << "unsupported load_missing_parameter_strategy: "
344
               << FLAGS_load_missing_parameter_strategy;
Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352 353 354
    return false;
  }
  return load(fs);
}

bool Parameter::load(std::istream& s) {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to read parameter " << getName();
355 356
  CHECK_EQ(header.version, kFormatVersion) << "Incorrect format version: "
                                           << header.version;
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
  CHECK_EQ(header.size, getSize())
      << "The size (" << header.size << ") in the file does not match the size "
      << "(" << getSize() << ") of the parameter: " << getName();
  CHECK_EQ(header.valueSize, sizeof(real))
      << "Unsupported valueSize " << header.valueSize << " at: " << getName();
  CHECK(s.read(reinterpret_cast<char*>(vec.getData()),
               header.size * sizeof(real)));

365
  auto& tmp = *bufs_[PARAMETER_VALUE].get();
Z
zhangjinchao01 已提交
366 367 368 369 370 371 372 373 374 375
  if (typeid(tmp) == typeid(GpuVector)) {
    bufs_[PARAMETER_VALUE]->copyFrom(vec);
  }

  if (config_.is_sparse() && config_.need_compact()) {
    // load from dense parameter with many zero
    CHECK_EQ(config_.dims_size(), 2);
    auto height = config_.dims(0);
    auto width = config_.dims(1);
    auto mat = Matrix::create(vec.getData(), height, width);
376 377 378 379 380
    CpuSparseMatrix sparseMat(height,
                              width,
                              0,
                              FLOAT_VALUE,
                              format_,
Z
zhangjinchao01 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                              /*trans*/ false);
    sparseMat.copyFrom(*mat, HPPL_STREAM_DEFAULT);
    auto nnz = sparseMat.getElementCnt();
    size_t rowSize = (format_ == SPARSE_CSR) ? height + 1 : nnz;
    size_t colSize = (format_ == SPARSE_CSR) ? nnz : width + 1;

    intBufs_[PARAMETER_ROWS]->copyFrom(sparseMat.getRows(), rowSize);
    intBufs_[PARAMETER_COLS]->copyFrom(sparseMat.getCols(), colSize);
    bufs_[PARAMETER_VALUE]->resize(nnz);  // for setMat check
    bufs_[PARAMETER_VALUE]->copyFrom(sparseMat.getValue(), nnz);
    config_.set_size(nnz);
    LOG(INFO) << "compact nnz=" << (1. * nnz / (height * width))
              << " name=" << config_.name();
  } else if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    size_t rowSize, colSize;
    CHECK_EQ(config_.dims_size(), 2);
    if (format_ == SPARSE_CSR) {
      rowSize = config_.dims(0) + 1;
      colSize = config_.size();
    } else {
      rowSize = config_.size();
      colSize = config_.dims(1) + 1;
    }
    CHECK(
        s.read(reinterpret_cast<char*>(rows.getData()), rowSize * sizeof(int)));
    CHECK(
        s.read(reinterpret_cast<char*>(cols.getData()), colSize * sizeof(int)));
410
    auto& paramRows = *intBufs_[PARAMETER_ROWS].get();
Z
zhangjinchao01 已提交
411 412 413
    if (typeid(paramRows) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_ROWS]->copyFrom(rows);
    }
414
    auto& paramCols = *intBufs_[PARAMETER_COLS].get();
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    if (typeid(paramCols) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_COLS]->copyFrom(cols);
    }
  }

  setValueUpdated();

  return true;
}

ThreadLocal<std::vector<VectorPtr>> Parameter::tlsTempBufs_;

VectorPtr* Parameter::getTlsTempBufs() {
  std::vector<VectorPtr>& bufs = *tlsTempBufs_;
  if (bufs.empty()) {
    bufs.resize(NUM_PARAMETER_TYPES);
    for (auto& vec : bufs) {
      vec.reset(new CpuVector(0, nullptr));
    }
  }
  return bufs.data();
}

void Parameter::exec(ExecFunc func) {
  auto execFunc = [this, func](int tid, size_t numThreads) {
    if (numThreads == 1) {  // single thread
      func(this->getBufs());
    } else {  // multi thread
      VectorPtr* vecs = Parameter::getTlsTempBufs();
444 445
      auto interval = calcSplitArrayInterval(
          this->getSize(), (size_t)tid, numThreads, 8LU /*for avx*/);
Z
zhangjinchao01 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
      for (size_t i = 0; i < (size_t)NUM_PARAMETER_TYPES; ++i) {
        if (bufs_[i]) {
          vecs[i]->subVecFrom(*bufs_[i], interval);
        }
      }
      func(vecs);
    }
  };

  getBuf(PARAMETER_VALUE)->exec(execFunc);
}

}  // namespace paddle