recurrent_op.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
29
using LoDTensor = framework::LoDTensor;
D
dongzhihong 已提交
30

Y
Yu Yang 已提交
31 32
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
33
                 ->GetMutable<LoDTensor>()
Y
Yan Chunwei 已提交
34 35
                 ->dims()[0];
  CreateScopes(scope);
36
  auto step_scopes = GetStepScopes(scope);
37 38
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
39
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
40

Y
Yan Chunwei 已提交
41 42
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
43 44
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
45
    }
Y
Yan Chunwei 已提交
46
    (*stepnet_)->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
47
  }
48 49
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
50 51
}

Y
Yu Yang 已提交
52
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
53 54
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
55 56
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
57
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
58

Y
Yan Chunwei 已提交
59
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
60
    // create output alias variables
Y
Yan Chunwei 已提交
61
    if (step_id > 0) {
62 63
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
64
    }
Y
Yan Chunwei 已提交
65
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
66
  }
67 68
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
69 70
}

Y
Yu Yang 已提交
71
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
72
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
73
  // supported later.
Y
Yan Chunwei 已提交
74 75 76 77 78
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
79 80 81
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
82 83 84

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
85
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
86

Y
Yan Chunwei 已提交
87
      // create step net's temp inputs
Y
Yan Chunwei 已提交
88
      for (auto& input : (*stepnet_)->Inputs()) {
89
        // the weight are located in parent scope
Y
Yu Yang 已提交
90 91
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
92
            step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
93 94
          }
        }
Y
Yan Chunwei 已提交
95
      }
Y
Yan Chunwei 已提交
96
      // create stepnet's outputs
Y
Yan Chunwei 已提交
97
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
98 99 100
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
101
      }
Y
Yu Yang 已提交
102
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
103 104 105 106
    }
  }
}

D
dangqingqing 已提交
107
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
108
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
109
  for (auto& attr : arg_->memories) {
110
    auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
111
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
112
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
113
                   attr.boot_var);
114 115
    auto* boot_mem =
        step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
116
    if (infer_shape_mode) {
117
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
118
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
119 120 121
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
122 123 124
  }
}

125 126 127 128 129 130 131 132 133
const rnn::ArgumentName RecurrentOp::kArgName{
    "step_net", "step_scopes",  "inlinks",
    "outlinks", "inlink_alias", "outlink_alias",
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
    "step_net",    "step_scopes",  "outlink@grad",
    "inlink@grad", "inlink_alias", "outlink_alias",
    "memories",    "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
134

Y
Yu Yang 已提交
135
RecurrentOp::RecurrentOp(const std::string& type,
Y
Yu Yang 已提交
136 137
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
138 139
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
140 141
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
142 143
}

D
dongzhihong 已提交
144 145
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
146
 public:
D
dongzhihong 已提交
147 148
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
149 150 151
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
152 153
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
154
        .AsDuplicable();
Y
Yu Yang 已提交
155
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
156
        .AsDuplicable();
Y
Yan Chunwei 已提交
157

D
dangqingqing 已提交
158
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
159
        .AsDuplicable();
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.inlink_alias, "alias of inlinks");
    AddAttr<std::vector<std::string>>(name.outlink_alias, "alias of outlinks");
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
174
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
175
  auto step_scopes = GetStepScopes(scope);
176 177
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
178 179
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
180 181
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
182
    }
Y
Yan Chunwei 已提交
183
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
184
  }
185
  LinkBootMemoryGradients(step_scopes[0], false);
186 187
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
188 189 190
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
191
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
192
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
193
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
194
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
195
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
196
                   "boot variable [%s] does not exists", attr.boot_var);
197 198 199
    auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
    auto* boot_mem_grad =
        step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
200
    if (infer_shape_mode) {
201 202 203 204
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
205 206 207
  }
}

Y
Yu Yang 已提交
208 209
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
210
                 ->GetMutable<LoDTensor>()
Y
Yan Chunwei 已提交
211 212
                 ->dims()[0];
  auto step_scopes = GetStepScopes(scope);
213 214
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
215 216
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
217 218
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
219
    }
Y
Yan Chunwei 已提交
220
    (*stepnet_)->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
221
  }
222 223
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
224
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
225 226
}

Y
Yu Yang 已提交
227
RecurrentGradientOp::RecurrentGradientOp(
Y
Yu Yang 已提交
228 229
    const std::string& type, const framework::VariableNameMap& inputs,
    const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
230 231
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
232 233
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
234 235 236 237 238
}

}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
239
REGISTER_OP_WITHOUT_GRADIENT(
240
    recurrent, paddle::operators::RecurrentOp,
F
fengjiayi 已提交
241
    paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);