retina_head.py 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Constant
from paddle.fluid.regularizer import L2Decay
from ppdet.modeling.ops import (AnchorGenerator, RetinaTargetAssign,
                                RetinaOutputDecoder)

28
from ppdet.core.workspace import register
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

__all__ = ['RetinaHead']


@register
class RetinaHead(object):
    """
    Retina Head

    Args:
        anchor_generator (object): `AnchorGenerator` instance
        target_assign (object): `RetinaTargetAssign` instance
        output_decoder (object): `RetinaOutputDecoder` instance
        num_convs_per_octave (int): Number of convolution layers in each octave
        num_chan (int): Number of octave output channels
        max_level (int): Highest level of FPN output
        min_level (int): Lowest level of FPN output
        prior_prob (float): Used to set the bias init for the class prediction layer
        base_scale (int): Anchors are generated based on this scale
        num_scales_per_octave (int): Number of anchor scales per octave
        num_classes (int): Number of classes
        gamma (float): The parameter in focal loss
        alpha (float): The parameter in focal loss
        sigma (float): The parameter in smooth l1 loss
    """
    __inject__ = ['anchor_generator', 'target_assign', 'output_decoder']
55
    __shared__ = ['num_classes']
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

    def __init__(self,
                 anchor_generator=AnchorGenerator().__dict__,
                 target_assign=RetinaTargetAssign().__dict__,
                 output_decoder=RetinaOutputDecoder().__dict__,
                 num_convs_per_octave=4,
                 num_chan=256,
                 max_level=7,
                 min_level=3,
                 prior_prob=0.01,
                 base_scale=4,
                 num_scales_per_octave=3,
                 num_classes=81,
                 gamma=2.0,
                 alpha=0.25,
                 sigma=3.0151134457776365):
        self.anchor_generator = anchor_generator
        self.target_assign = target_assign
        self.output_decoder = output_decoder
        self.num_convs_per_octave = num_convs_per_octave
        self.num_chan = num_chan
        self.max_level = max_level
        self.min_level = min_level
        self.prior_prob = prior_prob
        self.base_scale = base_scale
        self.num_scales_per_octave = num_scales_per_octave
        self.num_classes = num_classes
        self.gamma = gamma
        self.alpha = alpha
        self.sigma = sigma
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGenerator(**anchor_generator)
        if isinstance(target_assign, dict):
            self.target_assign = RetinaTargetAssign(**target_assign)
        if isinstance(output_decoder, dict):
            self.output_decoder = RetinaOutputDecoder(**output_decoder)

    def _class_subnet(self, body_feats, spatial_scale):
        """
        Get class predictions of all level FPN level.

        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.

        Returns:
            cls_pred_input(list): Class prediction of all input fpn levels.
        """
        assert len(body_feats) == self.max_level - self.min_level + 1
        fpn_name_list = list(body_feats.keys())
        cls_pred_list = []
        for lvl in range(self.min_level, self.max_level + 1):
            fpn_name = fpn_name_list[self.max_level - lvl]
            subnet_blob = body_feats[fpn_name]
            for i in range(self.num_convs_per_octave):
                conv_name = 'retnet_cls_conv_n{}_fpn{}'.format(i, lvl)
                conv_share_name = 'retnet_cls_conv_n{}_fpn{}'.format(
                    i, self.min_level)
                subnet_blob_in = subnet_blob
                subnet_blob = fluid.layers.conv2d(
                    input=subnet_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=1,
                    padding=1,
                    act='relu',
                    name=conv_name,
                    param_attr=ParamAttr(
                        name=conv_share_name + '_w',
                        initializer=Normal(
                            loc=0., scale=0.01)),
                    bias_attr=ParamAttr(
                        name=conv_share_name + '_b',
                        learning_rate=2.,
                        regularizer=L2Decay(0.)))

            # class prediction
            cls_name = 'retnet_cls_pred_fpn{}'.format(lvl)
            cls_share_name = 'retnet_cls_pred_fpn{}'.format(self.min_level)
            num_anchors = self.num_scales_per_octave * len(
                self.anchor_generator.aspect_ratios)
            cls_dim = num_anchors * (self.num_classes - 1)
            # bias initialization: b = -log((1 - pai) / pai)
            bias_init = float(-np.log((1 - self.prior_prob) / self.prior_prob))
            out_cls = fluid.layers.conv2d(
                input=subnet_blob,
                num_filters=cls_dim,
                filter_size=3,
                stride=1,
                padding=1,
                act=None,
                name=cls_name,
                param_attr=ParamAttr(
                    name=cls_share_name + '_w',
                    initializer=Normal(
                        loc=0., scale=0.01)),
                bias_attr=ParamAttr(
                    name=cls_share_name + '_b',
                    initializer=Constant(value=bias_init),
                    learning_rate=2.,
                    regularizer=L2Decay(0.)))
            cls_pred_list.append(out_cls)

        return cls_pred_list

    def _bbox_subnet(self, body_feats, spatial_scale):
        """
        Get bounding box predictions of all level FPN level.

        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.

        Returns:
            bbox_pred_input(list): Bounding box prediction of all input fpn
                levels.
        """
        assert len(body_feats) == self.max_level - self.min_level + 1
        fpn_name_list = list(body_feats.keys())
        bbox_pred_list = []
        for lvl in range(self.min_level, self.max_level + 1):
            fpn_name = fpn_name_list[self.max_level - lvl]
            subnet_blob = body_feats[fpn_name]
            for i in range(self.num_convs_per_octave):
                conv_name = 'retnet_bbox_conv_n{}_fpn{}'.format(i, lvl)
                conv_share_name = 'retnet_bbox_conv_n{}_fpn{}'.format(
                    i, self.min_level)
                subnet_blob_in = subnet_blob
                subnet_blob = fluid.layers.conv2d(
                    input=subnet_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=1,
                    padding=1,
                    act='relu',
                    name=conv_name,
                    param_attr=ParamAttr(
                        name=conv_share_name + '_w',
                        initializer=Normal(
                            loc=0., scale=0.01)),
                    bias_attr=ParamAttr(
                        name=conv_share_name + '_b',
                        learning_rate=2.,
                        regularizer=L2Decay(0.)))

            # bbox prediction
            bbox_name = 'retnet_bbox_pred_fpn{}'.format(lvl)
            bbox_share_name = 'retnet_bbox_pred_fpn{}'.format(self.min_level)
            num_anchors = self.num_scales_per_octave * len(
                self.anchor_generator.aspect_ratios)
            bbox_dim = num_anchors * 4
            out_bbox = fluid.layers.conv2d(
                input=subnet_blob,
                num_filters=bbox_dim,
                filter_size=3,
                stride=1,
                padding=1,
                act=None,
                name=bbox_name,
                param_attr=ParamAttr(
                    name=bbox_share_name + '_w',
                    initializer=Normal(
                        loc=0., scale=0.01)),
                bias_attr=ParamAttr(
                    name=bbox_share_name + '_b',
                    learning_rate=2.,
                    regularizer=L2Decay(0.)))
            bbox_pred_list.append(out_bbox)
        return bbox_pred_list

    def _anchor_generate(self, body_feats, spatial_scale):
        """
        Get anchor boxes of all level FPN level.

        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.

        Return:
            anchor_input(list): Anchors of all input fpn levels with shape of.
            anchor_var_input(list): Anchor variance of all input fpn levels with
                shape.
        """
        assert len(body_feats) == self.max_level - self.min_level + 1
        fpn_name_list = list(body_feats.keys())
        anchor_list = []
        anchor_var_list = []
        for lvl in range(self.min_level, self.max_level + 1):
            anchor_sizes = []
            stride = int(1 / spatial_scale[self.max_level - lvl])
            for octave in range(self.num_scales_per_octave):
                anchor_size = stride * (
                    2**(float(octave) /
                        float(self.num_scales_per_octave))) * self.base_scale
                anchor_sizes.append(anchor_size)
            fpn_name = fpn_name_list[self.max_level - lvl]
            anchor, anchor_var = self.anchor_generator(
                input=body_feats[fpn_name],
                anchor_sizes=anchor_sizes,
                aspect_ratios=self.anchor_generator.aspect_ratios,
                stride=[stride, stride])
            anchor_list.append(anchor)
            anchor_var_list.append(anchor_var)
        return anchor_list, anchor_var_list

    def _get_output(self, body_feats, spatial_scale):
        """
        Get class, bounding box predictions and anchor boxes of all level FPN level.

        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.

        Returns:
            cls_pred_input(list): Class prediction of all input fpn levels.
            bbox_pred_input(list): Bounding box prediction of all input fpn
                levels.
            anchor_input(list): Anchors of all input fpn levels with shape of.
            anchor_var_input(list): Anchor variance of all input fpn levels with
                shape.
        """
        assert len(body_feats) == self.max_level - self.min_level + 1
        # class subnet
        cls_pred_list = self._class_subnet(body_feats, spatial_scale)
        # bbox subnet
        bbox_pred_list = self._bbox_subnet(body_feats, spatial_scale)
        #generate anchors
        anchor_list, anchor_var_list = self._anchor_generate(body_feats,
                                                             spatial_scale)
        cls_pred_reshape_list = []
        bbox_pred_reshape_list = []
        anchor_reshape_list = []
        anchor_var_reshape_list = []
        for i in range(self.max_level - self.min_level + 1):
            cls_pred_transpose = fluid.layers.transpose(
                cls_pred_list[i], perm=[0, 2, 3, 1])
            cls_pred_reshape = fluid.layers.reshape(
                cls_pred_transpose, shape=(0, -1, self.num_classes - 1))
            bbox_pred_transpose = fluid.layers.transpose(
                bbox_pred_list[i], perm=[0, 2, 3, 1])
            bbox_pred_reshape = fluid.layers.reshape(
                bbox_pred_transpose, shape=(0, -1, 4))
            anchor_reshape = fluid.layers.reshape(anchor_list[i], shape=(-1, 4))
            anchor_var_reshape = fluid.layers.reshape(
                anchor_var_list[i], shape=(-1, 4))
            cls_pred_reshape_list.append(cls_pred_reshape)
            bbox_pred_reshape_list.append(bbox_pred_reshape)
            anchor_reshape_list.append(anchor_reshape)
            anchor_var_reshape_list.append(anchor_var_reshape)
        output = {}
        output['cls_pred'] = cls_pred_reshape_list
        output['bbox_pred'] = bbox_pred_reshape_list
        output['anchor'] = anchor_reshape_list
        output['anchor_var'] = anchor_var_reshape_list
        return output

    def get_prediction(self, body_feats, spatial_scale, im_info):
        """
        Get prediction bounding box in test stage.

        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
                row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
                N is the total number of prediction.
        """
        output = self._get_output(body_feats, spatial_scale)
        cls_pred_reshape_list = output['cls_pred']
        bbox_pred_reshape_list = output['bbox_pred']
        anchor_reshape_list = output['anchor']
        for i in range(self.max_level - self.min_level + 1):
            cls_pred_reshape_list[i] = fluid.layers.sigmoid(
                cls_pred_reshape_list[i])
        pred_result = self.output_decoder(
            bboxes=bbox_pred_reshape_list,
            scores=cls_pred_reshape_list,
            anchors=anchor_reshape_list,
            im_info=im_info)
        return {'bbox': pred_result}

    def get_loss(self, body_feats, spatial_scale, im_info, gt_box, gt_label,
                 is_crowd):
        """
        Calculate the loss of retinanet.
        Args:
            fpn_dict(dict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
            im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.
            gt_box(Variable): The ground-truth bounding boxes with shape [M, 4].
                M is the number of groundtruth.
            gt_label(Variable): The ground-truth labels with shape [M, 1].
                M is the number of groundtruth.
            is_crowd(Variable): Indicates groud-truth is crowd or not with
                shape [M, 1]. M is the number of groundtruth.

        Returns:
            Type: dict
                loss_cls(Variable): focal loss.
                loss_bbox(Variable): smooth l1 loss.
        """
        output = self._get_output(body_feats, spatial_scale)
        cls_pred_reshape_list = output['cls_pred']
        bbox_pred_reshape_list = output['bbox_pred']
        anchor_reshape_list = output['anchor']
        anchor_var_reshape_list = output['anchor_var']

        cls_pred_input = fluid.layers.concat(cls_pred_reshape_list, axis=1)
        bbox_pred_input = fluid.layers.concat(bbox_pred_reshape_list, axis=1)
        anchor_input = fluid.layers.concat(anchor_reshape_list, axis=0)
        anchor_var_input = fluid.layers.concat(anchor_var_reshape_list, axis=0)
        score_pred, loc_pred, score_tgt, loc_tgt, bbox_weight, fg_num = \
            self.target_assign(
                bbox_pred=bbox_pred_input,
                cls_logits=cls_pred_input,
                anchor_box=anchor_input,
                anchor_var=anchor_var_input,
                gt_boxes=gt_box,
                gt_labels=gt_label,
                is_crowd=is_crowd,
                im_info=im_info,
                num_classes=self.num_classes - 1)
        fg_num = fluid.layers.reduce_sum(fg_num, name='fg_num')
        loss_cls = fluid.layers.sigmoid_focal_loss(
            x=score_pred,
            label=score_tgt,
            fg_num=fg_num,
            gamma=self.gamma,
            alpha=self.alpha)
        loss_cls = fluid.layers.reduce_sum(loss_cls, name='loss_cls')
        loss_bbox = fluid.layers.smooth_l1(
            x=loc_pred,
            y=loc_tgt,
            sigma=self.sigma,
            inside_weight=bbox_weight,
            outside_weight=bbox_weight)
        loss_bbox = fluid.layers.reduce_sum(loss_bbox, name='loss_bbox')
        loss_bbox = loss_bbox / fg_num
        return {'loss_cls': loss_cls, 'loss_bbox': loss_bbox}