mask_head.py 8.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Layer, Sequential
from paddle.nn import Conv2D, Conv2DTranspose, ReLU
from paddle.nn.initializer import KaimingNormal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling import ops


@register
class MaskFeat(Layer):
    __inject__ = ['mask_roi_extractor']

    def __init__(self,
                 mask_roi_extractor=None,
                 num_convs=0,
                 feat_in=2048,
                 feat_out=256,
                 mask_num_stages=1,
                 share_bbox_feat=False):
        super(MaskFeat, self).__init__()
        self.num_convs = num_convs
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.mask_roi_extractor = mask_roi_extractor
        self.mask_num_stages = mask_num_stages
        self.share_bbox_feat = share_bbox_feat
        self.upsample_module = []
        fan_conv = feat_out * 3 * 3
        fan_deconv = feat_out * 2 * 2
        for i in range(self.mask_num_stages):
            name = 'stage_{}'.format(i)
            mask_conv = Sequential()
            for j in range(self.num_convs):
                conv_name = 'mask_inter_feat_{}'.format(j + 1)
                mask_conv.add_sublayer(
                    conv_name,
                    Conv2D(
                        in_channels=feat_in if j == 0 else feat_out,
                        out_channels=feat_out,
                        kernel_size=3,
                        padding=1,
                        weight_attr=ParamAttr(
                            initializer=KaimingNormal(fan_in=fan_conv)),
                        bias_attr=ParamAttr(
                            learning_rate=2., regularizer=L2Decay(0.))))
                mask_conv.add_sublayer(conv_name + 'act', ReLU())
            mask_conv.add_sublayer(
                'conv5_mask',
                Conv2DTranspose(
                    in_channels=self.feat_in,
                    out_channels=self.feat_out,
                    kernel_size=2,
                    stride=2,
                    weight_attr=ParamAttr(
                        initializer=KaimingNormal(fan_in=fan_deconv)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            mask_conv.add_sublayer('conv5_mask' + 'act', ReLU())
            upsample = self.add_sublayer(name, mask_conv)
            self.upsample_module.append(upsample)

    def forward(self,
                body_feats,
                bboxes,
                bbox_feat,
                mask_index,
                spatial_scale,
                stage=0,
                bbox_head_feat_func=None,
                mode='train'):
        if self.share_bbox_feat and mask_index is not None:
            rois_feat = paddle.gather(bbox_feat, mask_index)
        else:
            rois_feat = self.mask_roi_extractor(body_feats, bboxes,
                                                spatial_scale)
        if self.share_bbox_feat and bbox_head_feat_func is not None and mode == 'infer':
            rois_feat = bbox_head_feat_func(rois_feat)

        # upsample 
        mask_feat = self.upsample_module[stage](rois_feat)
        return mask_feat


@register
class MaskHead(Layer):
    __shared__ = ['num_classes', 'mask_num_stages']
    __inject__ = ['mask_feat']

    def __init__(self,
                 mask_feat,
                 feat_in=256,
                 num_classes=81,
                 mask_num_stages=1):
        super(MaskHead, self).__init__()
        self.mask_feat = mask_feat
        self.feat_in = feat_in
        self.num_classes = num_classes
        self.mask_num_stages = mask_num_stages
        self.mask_fcn_logits = []
        for i in range(self.mask_num_stages):
            name = 'mask_fcn_logits_{}'.format(i)
            self.mask_fcn_logits.append(
                self.add_sublayer(
                    name,
                    Conv2D(
                        in_channels=self.feat_in,
                        out_channels=self.num_classes,
                        kernel_size=1,
                        weight_attr=ParamAttr(initializer=KaimingNormal(
                            fan_in=self.num_classes)),
                        bias_attr=ParamAttr(
                            learning_rate=2., regularizer=L2Decay(0.0)))))

    def forward_train(self,
                      body_feats,
                      bboxes,
                      bbox_feat,
                      mask_index,
                      spatial_scale,
                      stage=0):
        # feat
        mask_feat = self.mask_feat(
            body_feats,
            bboxes,
            bbox_feat,
            mask_index,
            spatial_scale,
            stage,
            mode='train')
        # logits
        mask_head_out = self.mask_fcn_logits[stage](mask_feat)
        return mask_head_out

    def forward_test(self,
                     scale_factor,
                     body_feats,
                     bboxes,
                     bbox_feat,
                     mask_index,
                     spatial_scale,
                     stage=0,
                     bbox_head_feat_func=None):
        bbox, bbox_num = bboxes

        if bbox.shape[0] == 0:
            mask_head_out = paddle.full([1, 6], -1)
        else:
            scale_factor_list = []
            for idx in range(bbox_num.shape[0]):
                num = bbox_num[idx]
                scale = scale_factor[idx, 0]
                ones = paddle.ones(num)
                scale_expand = ones * scale
                scale_factor_list.append(scale_expand)
            scale_factor_list = paddle.cast(
                paddle.concat(scale_factor_list), 'float32')
            scale_factor_list = paddle.reshape(scale_factor_list, shape=[-1, 1])
            scaled_bbox = paddle.multiply(bbox[:, 2:], scale_factor_list)
            scaled_bboxes = (scaled_bbox, bbox_num)
            mask_feat = self.mask_feat(
                body_feats,
                scaled_bboxes,
                bbox_feat,
                mask_index,
                spatial_scale,
                stage,
                bbox_head_feat_func,
                mode='infer')
            mask_logit = self.mask_fcn_logits[stage](mask_feat)
            mask_head_out = F.sigmoid(mask_logit)
        return mask_head_out

    def forward(self,
                inputs,
                body_feats,
                bboxes,
                bbox_feat,
                mask_index,
                spatial_scale,
                bbox_head_feat_func=None,
                stage=0):
        if inputs['mode'] == 'train':
            mask_head_out = self.forward_train(body_feats, bboxes, bbox_feat,
                                               mask_index, spatial_scale, stage)
        else:
            scale_factor = inputs['scale_factor']
            mask_head_out = self.forward_test(
                scale_factor, body_feats, bboxes, bbox_feat, mask_index,
                spatial_scale, stage, bbox_head_feat_func)
        return mask_head_out

    def get_loss(self, mask_head_out, mask_target):
        mask_logits = paddle.flatten(mask_head_out, start_axis=1, stop_axis=-1)
        mask_label = paddle.cast(x=mask_target, dtype='float32')
        mask_label.stop_gradient = True
        loss_mask = ops.sigmoid_cross_entropy_with_logits(
            input=mask_logits,
            label=mask_label,
            ignore_index=-1,
            normalize=True)
        loss_mask = paddle.sum(loss_mask)

        return {'loss_mask': loss_mask}