retinanet.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
from collections import OrderedDict

21 22
import paddle.fluid as fluid

23
from ppdet.experimental import mixed_precision_global_state
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from ppdet.core.workspace import register

__all__ = ['RetinaNet']


@register
class RetinaNet(object):
    """
    RetinaNet architecture, see https://arxiv.org/abs/1708.02002

    Args:
        backbone (object): backbone instance
        fpn (object): feature pyramid network instance
        retina_head (object): `RetinaHead` instance
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'fpn', 'retina_head']

    def __init__(self, backbone, fpn, retina_head):
        super(RetinaNet, self).__init__()
        self.backbone = backbone
        self.fpn = fpn
        self.retina_head = retina_head

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        im_info = feed_vars['im_info']
        if mode == 'train':
53 54
            gt_bbox = feed_vars['gt_bbox']
            gt_class = feed_vars['gt_class']
55
            is_crowd = feed_vars['is_crowd']
56 57 58 59 60 61

        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

62 63 64
        # backbone
        body_feats = self.backbone(im)

65 66 67 68 69
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

70 71 72 73 74 75
        # FPN
        body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # retinanet head
        if mode == 'train':
            loss = self.retina_head.get_loss(body_feats, spatial_scale, im_info,
76
                                             gt_bbox, gt_class, is_crowd)
77 78 79 80 81 82 83 84
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.retina_head.get_prediction(body_feats, spatial_scale,
                                                   im_info)
            return pred

85 86 87 88 89 90
    def _inputs_def(self, image_shape):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
            'im_info':  {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
Q
qingqing01 已提交
91
            'im_id':    {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
            'gt_bbox':  {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_crowd': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
        }
        # yapf: enable
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=[
                'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd'
            ],  # for-train
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape)
        feed_vars = OrderedDict([(key, fluid.layers.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=64,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

122 123 124 125 126 127 128 129
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

    def eval(self, feed_vars):
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')