models.py 7.7 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based on: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict
import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.modeling.initializer import zeros_, normal_
from ppdet.core.workspace import register

from .layers import *

__all__ = ['ModifiedResNet', 'VisionTransformer', 'TextEncoder']


@register
class ModifiedResNet(nn.Layer):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self,
                 layers,
                 output_dim,
                 heads,
                 input_resolution=224,
                 width=64):
        super().__init__()

        self.output_dim = output_dim
        self.input_resolution = input_resolution

        # the 3-layer stem
        self.conv1 = nn.Conv2D(
            3, width // 2, kernel_size=3, stride=2, padding=1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(width // 2)
        self.relu1 = nn.ReLU()
        self.conv2 = nn.Conv2D(
            width // 2, width // 2, kernel_size=3, padding=1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(width // 2)
        self.relu2 = nn.ReLU()
        self.conv3 = nn.Conv2D(
            width // 2, width, kernel_size=3, padding=1, bias_attr=False)
        self.bn3 = nn.BatchNorm2D(width)
        self.relu3 = nn.ReLU()
        self.avgpool = nn.AvgPool2D(2)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2D(input_resolution // 32, embed_dim,
                                        heads, output_dim)

    def _make_layer(self, planes, blocks, stride=1):
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = x.cast(self.conv1.weight.dtype)
        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = self.relu3(self.bn3(self.conv3(x)))
        x = self.avgpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)
        return x


@register
class VisionTransformer(nn.Layer):
    def __init__(self,
                 input_resolution,
                 patch_size,
                 width,
                 layers,
                 heads,
                 output_dim=None,
                 stochastic_droplayer_rate=0.0):
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = nn.Conv2D(
            in_channels=3,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False)
        scale = width**-0.5
        self.class_embedding = self.create_parameter(
            shape=[width], attr=ParamAttr(initializer=Normal(std=scale)))
        self.positional_embedding = self.create_parameter(
            shape=[(input_resolution // patch_size)**2 + 1, width],
            attr=ParamAttr(initializer=Normal(std=scale)))
        self.ln_pre = LayerNorm(width)
        self.transformer = Transformer(width, layers, heads,
                                       stochastic_droplayer_rate)
        self.ln_post = LayerNorm(width)
        if output_dim is not None:
            self.proj = nn.Linear(self.width, self.output_dim, bias_attr=False)

    def forward(self, x):
        x = self.conv1(x)
        x = x.reshape([x.shape[0], x.shape[1], -1])
        x = x.transpose([0, 2, 1])
        class_embedding = self.class_embedding.cast(x.dtype) + paddle.zeros(
            [x.shape[0], 1, x.shape[-1]], type=x.dtype)
        x = paddle.concat([class_embedding, x], axis=1)
        x = x + self.positional_embedding.cast(x.dtype)
        x = self.ln_pre(x)
        x = feature = self.transformer(x)
        if self.output_dim is not None:
            x = self.ln_post(x[:, 0, :])
            x = self.proj(x)
        else:
            x = self.ln_post(x)

        return x, feature


@register
class TextEncoder(nn.Layer):
    def __init__(self, context_length, vocab_size, transformer_width,
                 transformer_heads, transformer_layers,
                 stochastic_droplayer_rate):
        super().__init__()
        self.context_length = context_length

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            stochastic_droplayer_rate=stochastic_droplayer_rate,
            attn_mask=self.build_attention_mask())

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = self.create_parameter(
            shape=[transformer_width, embed_dim],
            attr=ParamAttr(initializer=Constant(0.0)))
        self.ln_final = LayerNorm(transformer_width)
        self.text_projection = nn.Linear(
            transformer_width, embed_dim, bias_attr=False)
        self.logit_scale = self.create_parameter(
            shape=[], attr=ParamAttr(initializer=Constant(np.log(1. / 0.07))))

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = paddle.full((self.context_length, self.context_length),
                           float("-inf"))
        mask = paddle.triu(mask)
        return mask

    def forward(self, text):
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding.cast(x.dtype)
        x = self.transformer(x)
        x = self.ln_final(x).cast(x.dtype)

        # x.shape = [batch_size, text_length, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        batch_idx = paddle.arange(x.shape(0))
        seq_idx = text.argmax(dim=-1)
        gather_idx = paddle.stack([batch_idx, seq_idx], axis=1)
        x = paddle.gather_nd(x, gather_idx)
        x = self.text_projection(x)

        return x