s2anet_head.py 41.0 KB
Newer Older
C
cnn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py

C
cnn 已提交
17 18 19 20 21 22
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
23
from ppdet.modeling import ops
C
cnn 已提交
24 25 26 27 28
from ppdet.modeling import bbox_utils
from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
import numpy as np


C
cnn 已提交
29
class S2ANetAnchorGenerator(nn.Layer):
C
cnn 已提交
30
    """
C
cnn 已提交
31
    AnchorGenerator by paddle
C
cnn 已提交
32 33
    """

C
cnn 已提交
34 35
    def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
        super(S2ANetAnchorGenerator, self).__init__()
C
cnn 已提交
36
        self.base_size = base_size
C
cnn 已提交
37 38
        self.scales = paddle.to_tensor(scales)
        self.ratios = paddle.to_tensor(ratios)
C
cnn 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        self.scale_major = scale_major
        self.ctr = ctr
        self.base_anchors = self.gen_base_anchors()

    @property
    def num_base_anchors(self):
        return self.base_anchors.shape[0]

    def gen_base_anchors(self):
        w = self.base_size
        h = self.base_size
        if self.ctr is None:
            x_ctr = 0.5 * (w - 1)
            y_ctr = 0.5 * (h - 1)
        else:
            x_ctr, y_ctr = self.ctr

C
cnn 已提交
56
        h_ratios = paddle.sqrt(self.ratios)
C
cnn 已提交
57 58 59 60 61 62 63 64
        w_ratios = 1 / h_ratios
        if self.scale_major:
            ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
            hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
        else:
            ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
            hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])

C
cnn 已提交
65
        base_anchors = paddle.stack(
C
cnn 已提交
66 67 68 69 70
            [
                x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
                x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
            ],
            axis=-1)
C
cnn 已提交
71
        base_anchors = paddle.round(base_anchors)
C
cnn 已提交
72 73 74
        return base_anchors

    def _meshgrid(self, x, y, row_major=True):
C
cnn 已提交
75
        yy, xx = paddle.meshgrid(y, x)
C
cnn 已提交
76 77
        yy = yy.reshape([-1])
        xx = xx.reshape([-1])
C
cnn 已提交
78 79 80 81 82
        if row_major:
            return xx, yy
        else:
            return yy, xx

C
cnn 已提交
83
    def forward(self, featmap_size, stride=16):
C
cnn 已提交
84
        # featmap_size*stride project it to original area
C
cnn 已提交
85 86 87 88 89

        feat_h = featmap_size[0]
        feat_w = featmap_size[1]
        shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
        shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
C
cnn 已提交
90
        shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
C
cnn 已提交
91
        shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
C
cnn 已提交
92

C
cnn 已提交
93 94
        all_anchors = self.base_anchors[:, :] + shifts[:, :]
        all_anchors = all_anchors.reshape([feat_h * feat_w, 4])
C
cnn 已提交
95 96 97 98 99 100
        return all_anchors

    def valid_flags(self, featmap_size, valid_size):
        feat_h, feat_w = featmap_size
        valid_h, valid_w = valid_size
        assert valid_h <= feat_h and valid_w <= feat_w
C
cnn 已提交
101 102
        valid_x = paddle.zeros([feat_w], dtype='int32')
        valid_y = paddle.zeros([feat_h], dtype='int32')
C
cnn 已提交
103 104 105 106
        valid_x[:valid_w] = 1
        valid_y[:valid_h] = 1
        valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
        valid = valid_xx & valid_yy
C
cnn 已提交
107
        valid = paddle.reshape(valid, [-1, 1])
C
cnn 已提交
108
        valid = paddle.expand(valid, [-1, self.num_base_anchors]).reshape([-1])
C
cnn 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        return valid


class AlignConv(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
        super(AlignConv, self).__init__()
        self.kernel_size = kernel_size
        self.align_conv = paddle.vision.ops.DeformConv2D(
            in_channels,
            out_channels,
            kernel_size=self.kernel_size,
            padding=(self.kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
            bias_attr=None)

    @paddle.no_grad()
    def get_offset(self, anchors, featmap_size, stride):
        """
        Args:
            anchors: [M,5] xc,yc,w,h,angle
            featmap_size: (feat_h, feat_w)
            stride: 8
        Returns:

        """
        anchors = paddle.reshape(anchors, [-1, 5])  # (NA,5)
        dtype = anchors.dtype
C
cnn 已提交
137 138
        feat_h = featmap_size[0]
        feat_w = featmap_size[1]
C
cnn 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        pad = (self.kernel_size - 1) // 2
        idx = paddle.arange(-pad, pad + 1, dtype=dtype)

        yy, xx = paddle.meshgrid(idx, idx)
        xx = paddle.reshape(xx, [-1])
        yy = paddle.reshape(yy, [-1])

        # get sampling locations of default conv
        xc = paddle.arange(0, feat_w, dtype=dtype)
        yc = paddle.arange(0, feat_h, dtype=dtype)
        yc, xc = paddle.meshgrid(yc, xc)

        xc = paddle.reshape(xc, [-1, 1])
        yc = paddle.reshape(yc, [-1, 1])
        x_conv = xc + xx
        y_conv = yc + yy

        # get sampling locations of anchors
        # x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
        x_ctr = anchors[:, 0]
        y_ctr = anchors[:, 1]
        w = anchors[:, 2]
        h = anchors[:, 3]
        a = anchors[:, 4]

C
cnn 已提交
164 165 166 167 168
        x_ctr = paddle.reshape(x_ctr, [-1, 1])
        y_ctr = paddle.reshape(y_ctr, [-1, 1])
        w = paddle.reshape(w, [-1, 1])
        h = paddle.reshape(h, [-1, 1])
        a = paddle.reshape(a, [-1, 1])
C
cnn 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

        x_ctr = x_ctr / stride
        y_ctr = y_ctr / stride
        w_s = w / stride
        h_s = h / stride
        cos, sin = paddle.cos(a), paddle.sin(a)
        dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
        x, y = dw * xx, dh * yy
        xr = cos * x - sin * y
        yr = sin * x + cos * y
        x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
        # get offset filed
        offset_x = x_anchor - x_conv
        offset_y = y_anchor - y_conv
        offset = paddle.stack([offset_y, offset_x], axis=-1)
C
cnn 已提交
184 185
        offset = paddle.reshape(
            offset, [feat_h * feat_w, self.kernel_size * self.kernel_size * 2])
C
cnn 已提交
186
        offset = paddle.transpose(offset, [1, 0])
C
cnn 已提交
187 188 189
        offset = paddle.reshape(
            offset,
            [1, self.kernel_size * self.kernel_size * 2, feat_h, feat_w])
C
cnn 已提交
190 191
        return offset

C
cnn 已提交
192
    def forward(self, x, refine_anchors, featmap_size, stride):
C
cnn 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        offset = self.get_offset(refine_anchors, featmap_size, stride)
        x = F.relu(self.align_conv(x, offset))
        return x


@register
class S2ANetHead(nn.Layer):
    """
    S2Anet head
    Args:
        stacked_convs (int): number of stacked_convs
        feat_in (int): input channels of feat
        feat_out (int): output channels of feat
        num_classes (int): num_classes
        anchor_strides (list): stride of anchors
        anchor_scales (list): scale of anchors
        anchor_ratios (list): ratios of anchors
        target_means (list): target_means
        target_stds (list): target_stds
        align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
        align_conv_size (int): kernel size of align_conv
        use_sigmoid_cls (bool): use sigmoid_cls or not
C
cnn 已提交
215
        reg_loss_weight (list): loss weight for regression
C
cnn 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    """
    __shared__ = ['num_classes']
    __inject__ = ['anchor_assign']

    def __init__(self,
                 stacked_convs=2,
                 feat_in=256,
                 feat_out=256,
                 num_classes=15,
                 anchor_strides=[8, 16, 32, 64, 128],
                 anchor_scales=[4],
                 anchor_ratios=[1.0],
C
cnn 已提交
228 229
                 target_means=0.0,
                 target_stds=1.0,
C
cnn 已提交
230 231 232 233
                 align_conv_type='AlignConv',
                 align_conv_size=3,
                 use_sigmoid_cls=True,
                 anchor_assign=RBoxAssigner().__dict__,
C
cnn 已提交
234 235
                 reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.1],
                 cls_loss_weight=[1.1, 1.05],
236
                 reg_loss_type='l1'):
C
cnn 已提交
237 238 239 240 241 242 243 244
        super(S2ANetHead, self).__init__()
        self.stacked_convs = stacked_convs
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.anchor_list = None
        self.anchor_scales = anchor_scales
        self.anchor_ratios = anchor_ratios
        self.anchor_strides = anchor_strides
C
cnn 已提交
245
        self.anchor_strides = paddle.to_tensor(anchor_strides)
C
cnn 已提交
246
        self.anchor_base_sizes = list(anchor_strides)
C
cnn 已提交
247 248
        self.means = paddle.ones(shape=[5]) * target_means
        self.stds = paddle.ones(shape=[5]) * target_stds
C
cnn 已提交
249
        assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
C
cnn 已提交
250 251 252 253 254 255 256 257
        self.align_conv_type = align_conv_type
        self.align_conv_size = align_conv_size

        self.use_sigmoid_cls = use_sigmoid_cls
        self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
        self.sampling = False
        self.anchor_assign = anchor_assign
        self.reg_loss_weight = reg_loss_weight
258
        self.cls_loss_weight = cls_loss_weight
C
cnn 已提交
259 260 261
        self.alpha = 1.0
        self.beta = 1.0
        self.reg_loss_type = reg_loss_type
C
cnn 已提交
262 263 264 265 266
        self.s2anet_head_out = None

        # anchor
        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
C
cnn 已提交
267 268
            self.anchor_generators.append(
                S2ANetAnchorGenerator(anchor_base, anchor_scales,
C
cnn 已提交
269
                                      anchor_ratios))
C
cnn 已提交
270

C
cnn 已提交
271
        self.anchor_generators = nn.LayerList(self.anchor_generators)
C
cnn 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        self.fam_cls_convs = nn.Sequential()
        self.fam_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            chan_in = self.feat_in if i == 0 else self.feat_out

            self.fam_cls_convs.add_sublayer(
                'fam_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.fam_reg_convs.add_sublayer(
                'fam_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.fam_reg = nn.Conv2D(
            self.feat_out,
            5,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))
        prior_prob = 0.01
        bias_init = float(-np.log((1 - prior_prob) / prior_prob))
        self.fam_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))

        if self.align_conv_type == "AlignConv":
            self.align_conv = AlignConv(self.feat_out, self.feat_out,
                                        self.align_conv_size)
        elif self.align_conv_type == "Conv":
            self.align_conv = nn.Conv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        elif self.align_conv_type == "DCN":
            self.align_conv_offset = nn.Conv2D(
                self.feat_out,
                2 * self.align_conv_size**2,
                1,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=ParamAttr(initializer=Constant(0)))

            self.align_conv = paddle.vision.ops.DeformConv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=False)

C
cnn 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        self.or_conv = nn.Conv2D(
            self.feat_out,
            self.feat_out,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

        # ODM
        self.odm_cls_convs = nn.Sequential()
        self.odm_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            ch_in = self.feat_out
            # ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out

            self.odm_cls_convs.add_sublayer(
                'odm_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=ch_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.odm_reg_convs.add_sublayer(
                'odm_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=self.feat_out,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.odm_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))
        self.odm_reg = nn.Conv2D(
            self.feat_out,
            5,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
405 406
        self.featmap_sizes = []
        self.base_anchors_list = []
C
cnn 已提交
407 408
        self.refine_anchor_list = []

C
cnn 已提交
409 410 411 412 413 414 415
    def forward(self, feats):
        fam_reg_branch_list = []
        fam_cls_branch_list = []

        odm_reg_branch_list = []
        odm_cls_branch_list = []

C
cnn 已提交
416 417
        self.featmap_sizes_list = []
        self.base_anchors_list = []
C
cnn 已提交
418 419
        self.refine_anchor_list = []

C
cnn 已提交
420 421
        for feat_idx in range(len(feats)):
            feat = feats[feat_idx]
C
cnn 已提交
422
            fam_cls_feat = self.fam_cls_convs(feat)
423

C
cnn 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            fam_cls = self.fam_cls(fam_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            fam_cls = fam_cls.transpose([0, 2, 3, 1])
            fam_cls_reshape = paddle.reshape(
                fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
            fam_cls_branch_list.append(fam_cls_reshape)

            fam_reg_feat = self.fam_reg_convs(feat)

            fam_reg = self.fam_reg(fam_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            fam_reg = fam_reg.transpose([0, 2, 3, 1])
            fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
            fam_reg_branch_list.append(fam_reg_reshape)

439
            # prepare anchor
C
cnn 已提交
440 441 442 443 444 445 446
            featmap_size = (paddle.shape(feat)[2], paddle.shape(feat)[3])
            self.featmap_sizes_list.append(featmap_size)
            init_anchors = self.anchor_generators[feat_idx](
                featmap_size, self.anchor_strides[feat_idx])

            init_anchors = paddle.to_tensor(init_anchors, dtype='float32')
            NA = featmap_size[0] * featmap_size[1]
C
cnn 已提交
447
            init_anchors = paddle.reshape(init_anchors, [NA, 4])
C
cnn 已提交
448 449 450
            init_anchors = self.rect2rbox(init_anchors)
            self.base_anchors_list.append(init_anchors)

451
            if self.training:
C
cnn 已提交
452 453
                refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors)
            else:
454
                refine_anchor = self.bbox_decode(fam_reg, init_anchors)
455

C
cnn 已提交
456 457 458 459 460
            self.refine_anchor_list.append(refine_anchor)

            if self.align_conv_type == 'AlignConv':
                align_feat = self.align_conv(feat,
                                             refine_anchor.clone(),
C
cnn 已提交
461 462
                                             featmap_size,
                                             self.anchor_strides[feat_idx])
C
cnn 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            elif self.align_conv_type == 'DCN':
                align_offset = self.align_conv_offset(feat)
                align_feat = self.align_conv(feat, align_offset)
            elif self.align_conv_type == 'Conv':
                align_feat = self.align_conv(feat)

            or_feat = self.or_conv(align_feat)
            odm_reg_feat = or_feat
            odm_cls_feat = or_feat

            odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
            odm_cls_feat = self.odm_cls_convs(odm_cls_feat)

            odm_cls_score = self.odm_cls(odm_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
C
cnn 已提交
479
            odm_cls_score_shape = odm_cls_score.shape
C
cnn 已提交
480 481 482 483
            odm_cls_score_reshape = paddle.reshape(odm_cls_score, [
                odm_cls_score_shape[0], odm_cls_score_shape[1] *
                odm_cls_score_shape[2], self.cls_out_channels
            ])
C
cnn 已提交
484 485 486 487 488 489

            odm_cls_branch_list.append(odm_cls_score_reshape)

            odm_bbox_pred = self.odm_reg(odm_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
C
cnn 已提交
490 491 492
            odm_bbox_pred_reshape = paddle.reshape(odm_bbox_pred, [-1, 5])
            odm_bbox_pred_reshape = paddle.unsqueeze(
                odm_bbox_pred_reshape, axis=0)
C
cnn 已提交
493 494 495 496 497 498
            odm_reg_branch_list.append(odm_bbox_pred_reshape)

        self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
                                odm_cls_branch_list, odm_reg_branch_list)
        return self.s2anet_head_out

C
cnn 已提交
499
    def get_prediction(self, nms_pre=2000):
C
cnn 已提交
500
        refine_anchors = self.refine_anchor_list
C
cnn 已提交
501 502 503 504
        fam_cls_branch_list = self.s2anet_head_out[0]
        fam_reg_branch_list = self.s2anet_head_out[1]
        odm_cls_branch_list = self.s2anet_head_out[2]
        odm_reg_branch_list = self.s2anet_head_out[3]
C
cnn 已提交
505
        pred_scores, pred_bboxes = self.get_bboxes(
C
cnn 已提交
506 507
            odm_cls_branch_list, odm_reg_branch_list, refine_anchors, nms_pre,
            self.cls_out_channels, self.use_sigmoid_cls)
C
cnn 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        return pred_scores, pred_bboxes

    def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
        """
        Args:
            pred: pred score
            label: label
            delta: delta
        Returns: loss
        """
        assert pred.shape == label.shape and label.numel() > 0
        assert delta > 0
        diff = paddle.abs(pred - label)
        loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
                            diff - 0.5 * delta)
        return loss

C
cnn 已提交
525
    def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='gwd'):
C
cnn 已提交
526 527
        (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
         pos_inds, neg_inds) = fam_target
528 529 530 531 532
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out

        fam_cls_losses = []
        fam_bbox_losses = []
        st_idx = 0
C
cnn 已提交
533 534 535 536
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)

C
cnn 已提交
537
        for idx, feat_size in enumerate(self.featmap_sizes_list):
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
            feat_anchor_num = feat_size[0] * feat_size[1]

            # step1:  get data
            feat_labels = labels[st_idx:st_idx + feat_anchor_num]
            feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]

            feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
            feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]

            # step2: calc cls loss
            feat_labels = feat_labels.reshape(-1)
            feat_label_weights = feat_label_weights.reshape(-1)

            fam_cls_score = fam_cls_branch_list[idx]
            fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
            fam_cls_score1 = fam_cls_score

            feat_labels = paddle.to_tensor(feat_labels)
C
cnn 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            feat_labels_one_hot = paddle.nn.functional.one_hot(
                feat_labels, self.cls_out_channels + 1)
            feat_labels_one_hot = feat_labels_one_hot[:, 1:]
            feat_labels_one_hot.stop_gradient = True

            num_total_samples = paddle.to_tensor(
                num_total_samples, dtype='float32', stop_gradient=True)

            fam_cls = F.sigmoid_focal_loss(
                fam_cls_score1,
                feat_labels_one_hot,
                normalizer=num_total_samples,
                reduction='none')

            feat_label_weights = feat_label_weights.reshape(
                feat_label_weights.shape[0], 1)
            feat_label_weights = np.repeat(
                feat_label_weights, self.cls_out_channels, axis=1)
            feat_label_weights = paddle.to_tensor(
                feat_label_weights, stop_gradient=True)

            fam_cls = fam_cls * feat_label_weights
            fam_cls_total = paddle.sum(fam_cls)
579 580 581 582 583 584 585 586 587 588
            fam_cls_losses.append(fam_cls_total)

            # step3: regression loss
            feat_bbox_targets = paddle.to_tensor(
                feat_bbox_targets, dtype='float32', stop_gradient=True)
            feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])

            fam_bbox_pred = fam_reg_branch_list[idx]
            fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
            fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
C
cnn 已提交
589 590 591 592 593 594 595
            fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
            loss_weight = paddle.to_tensor(
                self.reg_loss_weight, dtype='float32', stop_gradient=True)
            fam_bbox = paddle.multiply(fam_bbox, loss_weight)
            feat_bbox_weights = paddle.to_tensor(
                feat_bbox_weights, stop_gradient=True)

C
cnn 已提交
596 597 598
            if reg_loss_type == 'l1':
                fam_bbox = fam_bbox * feat_bbox_weights
                fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
C
cnn 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
            elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
                fam_bbox = paddle.sum(fam_bbox, axis=-1)
                feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
                try:
                    from rbox_iou_ops import rbox_iou
                except Exception as e:
                    print("import custom_ops error, try install rbox_iou_ops " \
                          "following ppdet/ext_op/README.md", e)
                    sys.stdout.flush()
                    sys.exit(-1)
                # calc iou
                fam_bbox_decode = self.delta2rbox(self.base_anchors_list[idx],
                                                  fam_bbox_pred)
                bbox_gt_bboxes = paddle.to_tensor(
                    bbox_gt_bboxes,
                    dtype=fam_bbox_decode.dtype,
                    place=fam_bbox_decode.place)
                bbox_gt_bboxes.stop_gradient = True
                iou = rbox_iou(fam_bbox_decode, bbox_gt_bboxes)
                iou = paddle.diag(iou)

C
cnn 已提交
620
                if reg_loss_type == 'gwd':
C
cnn 已提交
621 622 623 624 625
                    bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
                                                          feat_anchor_num, :]
                    fam_bbox_total = self.gwd_loss(fam_bbox_decode,
                                                   bbox_gt_bboxes_level)
                    fam_bbox_total = fam_bbox_total * feat_bbox_weights
626 627
                    fam_bbox_total = paddle.sum(
                        fam_bbox_total) / num_total_samples
628 629

            fam_bbox_losses.append(fam_bbox_total)
C
cnn 已提交
630
            st_idx += feat_anchor_num
631 632

        fam_cls_loss = paddle.add_n(fam_cls_losses)
633 634
        fam_cls_loss_weight = paddle.to_tensor(
            self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
635 636
        fam_cls_loss = fam_cls_loss * fam_cls_loss_weight
        fam_reg_loss = paddle.add_n(fam_bbox_losses)
C
cnn 已提交
637 638
        return fam_cls_loss, fam_reg_loss

C
cnn 已提交
639
    def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='gwd'):
C
cnn 已提交
640 641
        (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
         pos_inds, neg_inds) = odm_target
642 643 644 645 646
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out

        odm_cls_losses = []
        odm_bbox_losses = []
        st_idx = 0
C
cnn 已提交
647 648 649
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)
C
cnn 已提交
650

C
cnn 已提交
651
        for idx, feat_size in enumerate(self.featmap_sizes_list):
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            feat_anchor_num = feat_size[0] * feat_size[1]

            # step1:  get data
            feat_labels = labels[st_idx:st_idx + feat_anchor_num]
            feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]

            feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
            feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]

            # step2: calc cls loss
            feat_labels = feat_labels.reshape(-1)
            feat_label_weights = feat_label_weights.reshape(-1)

            odm_cls_score = odm_cls_branch_list[idx]
            odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
            odm_cls_score1 = odm_cls_score

            feat_labels = paddle.to_tensor(feat_labels)
C
cnn 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
            feat_labels_one_hot = paddle.nn.functional.one_hot(
                feat_labels, self.cls_out_channels + 1)
            feat_labels_one_hot = feat_labels_one_hot[:, 1:]
            feat_labels_one_hot.stop_gradient = True

            num_total_samples = paddle.to_tensor(
                num_total_samples, dtype='float32', stop_gradient=True)
            odm_cls = F.sigmoid_focal_loss(
                odm_cls_score1,
                feat_labels_one_hot,
                normalizer=num_total_samples,
                reduction='none')

            feat_label_weights = feat_label_weights.reshape(
                feat_label_weights.shape[0], 1)
            feat_label_weights = np.repeat(
                feat_label_weights, self.cls_out_channels, axis=1)
            feat_label_weights = paddle.to_tensor(feat_label_weights)
            feat_label_weights.stop_gradient = True

            odm_cls = odm_cls * feat_label_weights
            odm_cls_total = paddle.sum(odm_cls)
692 693 694 695 696 697 698 699 700 701 702 703
            odm_cls_losses.append(odm_cls_total)

            # # step3: regression loss
            feat_bbox_targets = paddle.to_tensor(
                feat_bbox_targets, dtype='float32')
            feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
            feat_bbox_targets.stop_gradient = True

            odm_bbox_pred = odm_reg_branch_list[idx]
            odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
            odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
            odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
C
cnn 已提交
704 705 706 707 708 709 710

            loss_weight = paddle.to_tensor(
                self.reg_loss_weight, dtype='float32', stop_gradient=True)
            odm_bbox = paddle.multiply(odm_bbox, loss_weight)
            feat_bbox_weights = paddle.to_tensor(
                feat_bbox_weights, stop_gradient=True)

C
cnn 已提交
711 712 713
            if reg_loss_type == 'l1':
                odm_bbox = odm_bbox * feat_bbox_weights
                odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
C
cnn 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
            elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
                odm_bbox = paddle.sum(odm_bbox, axis=-1)
                feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
                try:
                    from rbox_iou_ops import rbox_iou
                except Exception as e:
                    print("import custom_ops error, try install rbox_iou_ops " \
                          "following ppdet/ext_op/README.md", e)
                    sys.stdout.flush()
                    sys.exit(-1)
                # calc iou
                odm_bbox_decode = self.delta2rbox(self.refine_anchor_list[idx],
                                                  odm_bbox_pred)
                bbox_gt_bboxes = paddle.to_tensor(
                    bbox_gt_bboxes,
                    dtype=odm_bbox_decode.dtype,
                    place=odm_bbox_decode.place)
                bbox_gt_bboxes.stop_gradient = True
                iou = rbox_iou(odm_bbox_decode, bbox_gt_bboxes)
                iou = paddle.diag(iou)

C
cnn 已提交
735
                if reg_loss_type == 'gwd':
C
cnn 已提交
736 737 738 739 740
                    bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
                                                          feat_anchor_num, :]
                    odm_bbox_total = self.gwd_loss(odm_bbox_decode,
                                                   bbox_gt_bboxes_level)
                    odm_bbox_total = odm_bbox_total * feat_bbox_weights
741 742
                    odm_bbox_total = paddle.sum(
                        odm_bbox_total) / num_total_samples
C
cnn 已提交
743

744
            odm_bbox_losses.append(odm_bbox_total)
C
cnn 已提交
745
            st_idx += feat_anchor_num
746 747

        odm_cls_loss = paddle.add_n(odm_cls_losses)
748
        odm_cls_loss_weight = paddle.to_tensor(
749 750 751
            self.cls_loss_weight[1], dtype='float32', stop_gradient=True)
        odm_cls_loss = odm_cls_loss * odm_cls_loss_weight
        odm_reg_loss = paddle.add_n(odm_bbox_losses)
C
cnn 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        return odm_cls_loss, odm_reg_loss

    def get_loss(self, inputs):
        # inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd

        # compute loss
        fam_cls_loss_lst = []
        fam_reg_loss_lst = []
        odm_cls_loss_lst = []
        odm_reg_loss_lst = []

        im_shape = inputs['im_shape']
        for im_id in range(im_shape.shape[0]):
            np_im_shape = inputs['im_shape'][im_id].numpy()
            np_scale_factor = inputs['scale_factor'][im_id].numpy()
            # data_format: (xc, yc, w, h, theta)
            gt_bboxes = inputs['gt_rbox'][im_id].numpy()
            gt_labels = inputs['gt_class'][im_id].numpy()
            is_crowd = inputs['is_crowd'][im_id].numpy()
            gt_labels = gt_labels + 1

773
            # featmap_sizes
C
cnn 已提交
774
            anchors_list_all = np.concatenate(self.base_anchors_list)
775 776 777 778 779 780 781 782 783

            # get im_feat
            fam_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[0]]
            fam_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[1]]
            odm_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[2]]
            odm_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[3]]
            im_s2anet_head_out = (fam_cls_feats_list, fam_reg_feats_list,
                                  odm_cls_feats_list, odm_reg_feats_list)

C
cnn 已提交
784
            # FAM
785 786 787
            im_fam_target = self.anchor_assign(anchors_list_all, gt_bboxes,
                                               gt_labels, is_crowd)
            if im_fam_target is not None:
C
cnn 已提交
788
                im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
C
cnn 已提交
789
                    im_fam_target, im_s2anet_head_out, self.reg_loss_type)
C
cnn 已提交
790 791 792 793
                fam_cls_loss_lst.append(im_fam_cls_loss)
                fam_reg_loss_lst.append(im_fam_reg_loss)

            # ODM
C
cnn 已提交
794 795
            np_refine_anchors_list = paddle.concat(
                self.refine_anchor_list).numpy()
C
cnn 已提交
796 797
            np_refine_anchors_list = np.concatenate(np_refine_anchors_list)
            np_refine_anchors_list = np_refine_anchors_list.reshape(-1, 5)
C
cnn 已提交
798 799
            im_odm_target = self.anchor_assign(np_refine_anchors_list,
                                               gt_bboxes, gt_labels, is_crowd)
C
cnn 已提交
800

801
            if im_odm_target is not None:
C
cnn 已提交
802
                im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
C
cnn 已提交
803
                    im_odm_target, im_s2anet_head_out, self.reg_loss_type)
C
cnn 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
                odm_cls_loss_lst.append(im_odm_cls_loss)
                odm_reg_loss_lst.append(im_odm_reg_loss)
        fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
        fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
        odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
        odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
        return {
            'fam_cls_loss': fam_cls_loss,
            'fam_reg_loss': fam_reg_loss,
            'odm_cls_loss': odm_cls_loss,
            'odm_reg_loss': odm_reg_loss
        }

    def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
                   cls_out_channels, use_sigmoid_cls):
        assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)

        mlvl_bboxes = []
        mlvl_scores = []

        idx = 0
        for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
                                                 mlvl_anchors):
            cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
            if use_sigmoid_cls:
                scores = F.sigmoid(cls_score)
            else:
                scores = F.softmax(cls_score, axis=-1)

            # bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
            bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
            bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
            anchors = paddle.reshape(anchors, [-1, 5])

C
cnn 已提交
838
            if scores.shape[0] > nms_pre:
C
cnn 已提交
839 840 841 842 843 844 845 846 847 848 849
                # Get maximum scores for foreground classes.
                if use_sigmoid_cls:
                    max_scores = paddle.max(scores, axis=1)
                else:
                    max_scores = paddle.max(scores[:, 1:], axis=1)

                topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
                anchors = paddle.gather(anchors, topk_inds)
                bbox_pred = paddle.gather(bbox_pred, topk_inds)
                scores = paddle.gather(scores, topk_inds)

C
cnn 已提交
850 851
            bbox_delta = paddle.reshape(bbox_pred, [-1, 5])
            bboxes = self.delta2rbox(anchors, bbox_delta)
C
cnn 已提交
852 853 854 855 856 857 858 859 860
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)

            idx += 1

        mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
        mlvl_scores = paddle.concat(mlvl_scores)

        return mlvl_scores, mlvl_bboxes
C
cnn 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

    def rect2rbox(self, bboxes):
        """
        :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
        :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
        """
        bboxes = paddle.reshape(bboxes, [-1, 4])
        num_boxes = paddle.shape(bboxes)[0]
        x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
        y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
        edges1 = paddle.abs(bboxes[:, 2] - bboxes[:, 0])
        edges2 = paddle.abs(bboxes[:, 3] - bboxes[:, 1])

        rbox_w = paddle.maximum(edges1, edges2)
        rbox_h = paddle.minimum(edges1, edges2)

        # set angle
        inds = edges1 < edges2
        inds = paddle.cast(inds, 'int32')
        rboxes_angle = inds * np.pi / 2.0

        rboxes = paddle.stack(
            (x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=1)
        return rboxes

    # deltas to rbox
    def delta2rbox(self, rrois, deltas, wh_ratio_clip=1e-6):
        """
        :param rrois: (cx, cy, w, h, theta)
        :param deltas: (dx, dy, dw, dh, dtheta)
        :param means: means of anchor
        :param stds: stds of anchor
        :param wh_ratio_clip: clip threshold of wh_ratio
        :return:
        """
        deltas = paddle.reshape(deltas, [-1, 5])
        rrois = paddle.reshape(rrois, [-1, 5])
        # fix dy2st bug denorm_deltas = deltas * self.stds + self.means
C
cnn 已提交
899 900
        denorm_deltas = paddle.add(
            paddle.multiply(deltas, self.stds), self.means)
C
cnn 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

        dx = denorm_deltas[:, 0]
        dy = denorm_deltas[:, 1]
        dw = denorm_deltas[:, 2]
        dh = denorm_deltas[:, 3]
        dangle = denorm_deltas[:, 4]
        max_ratio = np.abs(np.log(wh_ratio_clip))
        dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
        dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)

        rroi_x = rrois[:, 0]
        rroi_y = rrois[:, 1]
        rroi_w = rrois[:, 2]
        rroi_h = rrois[:, 3]
        rroi_angle = rrois[:, 4]

        gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
            rroi_angle) + rroi_x
        gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
            rroi_angle) + rroi_y
        gw = rroi_w * dw.exp()
        gh = rroi_h * dh.exp()
        ga = np.pi * dangle + rroi_angle
        ga = (ga + np.pi / 4) % np.pi - np.pi / 4
        ga = paddle.to_tensor(ga)
        gw = paddle.to_tensor(gw, dtype='float32')
        gh = paddle.to_tensor(gh, dtype='float32')
        bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
        return bboxes

C
cnn 已提交
931
    def bbox_decode(self, bbox_preds, anchors):
C
cnn 已提交
932 933 934 935 936 937 938 939 940 941 942
        """decode bbox from deltas
        Args:
            bbox_preds: [N,H,W,5]
            anchors: [H*W,5]
        return:
            bboxes: [N,H,W,5]
        """
        num_imgs, H, W, _ = bbox_preds.shape
        bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
        bboxes = self.delta2rbox(anchors, bbox_delta)
        return bboxes
C
cnn 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    def trace(self, A):
        tr = paddle.diagonal(A, axis1=-2, axis2=-1)
        tr = paddle.sum(tr, axis=-1)
        return tr

    def sqrt_newton_schulz_autograd(self, A, numIters):
        A_shape = A.shape
        batchSize = A_shape[0]
        dim = A_shape[1]

        normA = A * A
        normA = paddle.sum(normA, axis=1)
        normA = paddle.sum(normA, axis=1)
        normA = paddle.sqrt(normA)
        normA1 = normA.reshape([batchSize, 1, 1])
        Y = paddle.divide(A, paddle.expand_as(normA1, A))
        I = paddle.eye(dim, dim).reshape([1, dim, dim])
        l0 = []
        for i in range(batchSize):
            l0.append(I)
        I = paddle.concat(l0, axis=0)
        I.stop_gradient = False
        Z = paddle.eye(dim, dim).reshape([1, dim, dim])
        l1 = []
        for i in range(batchSize):
            l1.append(Z)
        Z = paddle.concat(l1, axis=0)
        Z.stop_gradient = False

        for i in range(numIters):
            T = 0.5 * (3.0 * I - Z.bmm(Y))
            Y = Y.bmm(T)
            Z = T.bmm(Z)
        sA = Y * paddle.sqrt(normA1).reshape([batchSize, 1, 1])
        sA = paddle.expand_as(sA, A)
        return sA

    def wasserstein_distance_sigma(sigma1, sigma2):
        wasserstein_distance_item2 = paddle.matmul(
            sigma1, sigma1) + paddle.matmul(
                sigma2, sigma2) - 2 * self.sqrt_newton_schulz_autograd(
                    paddle.matmul(
                        paddle.matmul(sigma1, paddle.matmul(sigma2, sigma2)),
                        sigma1), 10)
        wasserstein_distance_item2 = self.trace(wasserstein_distance_item2)

        return wasserstein_distance_item2

    def xywhr2xyrs(self, xywhr):
        xywhr = paddle.reshape(xywhr, [-1, 5])
        xy = xywhr[:, :2]
        wh = paddle.clip(xywhr[:, 2:4], min=1e-7, max=1e7)
        r = xywhr[:, 4]
        cos_r = paddle.cos(r)
        sin_r = paddle.sin(r)
        R = paddle.stack(
            (cos_r, -sin_r, sin_r, cos_r), axis=-1).reshape([-1, 2, 2])
        S = 0.5 * paddle.nn.functional.diag_embed(wh)
        return xy, R, S

    def gwd_loss(self,
                 pred,
                 target,
                 fun='log',
                 tau=1.0,
                 alpha=1.0,
                 normalize=False):

        xy_p, R_p, S_p = self.xywhr2xyrs(pred)
        xy_t, R_t, S_t = self.xywhr2xyrs(target)

        xy_distance = (xy_p - xy_t).square().sum(axis=-1)

        Sigma_p = R_p.matmul(S_p.square()).matmul(R_p.transpose([0, 2, 1]))
        Sigma_t = R_t.matmul(S_t.square()).matmul(R_t.transpose([0, 2, 1]))

        whr_distance = paddle.diagonal(
            S_p, axis1=-2, axis2=-1).square().sum(axis=-1)

        whr_distance = whr_distance + paddle.diagonal(
            S_t, axis1=-2, axis2=-1).square().sum(axis=-1)
        _t = Sigma_p.matmul(Sigma_t)

        _t_tr = paddle.diagonal(_t, axis1=-2, axis2=-1).sum(axis=-1)
        _t_det_sqrt = paddle.diagonal(S_p, axis1=-2, axis2=-1).prod(axis=-1)
        _t_det_sqrt = _t_det_sqrt * paddle.diagonal(
            S_t, axis1=-2, axis2=-1).prod(axis=-1)
        whr_distance = whr_distance + (-2) * (
            (_t_tr + 2 * _t_det_sqrt).clip(0).sqrt())

        distance = (xy_distance + alpha * alpha * whr_distance).clip(0)

        if normalize:
            wh_p = pred[..., 2:4].clip(min=1e-7, max=1e7)
            wh_t = target[..., 2:4].clip(min=1e-7, max=1e7)
            scale = ((wh_p.log() + wh_t.log()).sum(dim=-1) / 4).exp()
            distance = distance / scale

        if fun == 'log':
            distance = paddle.log1p(distance)

        if tau >= 1.0:
            return 1 - 1 / (tau + distance)

        return distance