test_recognize_digits.py 9.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
15

16
import paddle.fluid.core as core
17
import math
武毅 已提交
18
import os
19 20 21 22 23 24 25 26
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
27 28 29 30 31 32 33

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
34
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
35 36
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
53
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
54 55 56 57 58 59 60 61 62 63
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


64 65 66 67 68
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
69 70
          params_filename=None,
          is_local=True):
71 72
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
73 74 75
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

76
    if nn_type == 'mlp':
Y
Yang Yu 已提交
77 78 79 80
        net_conf = mlp
    else:
        net_conf = conv_net

81
    if parallel:
82
        places = get_places()
Y
Yang Yu 已提交
83 84 85 86
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
87 88
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
89 90 91 92
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
93 94
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
95
    else:
L
Liu Yiqun 已提交
96
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
97

98
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
99

W
Wu Yi 已提交
100
    optimizer = fluid.optimizer.Adam(learning_rate=0.001, LARS_weight_decay=0.3)
W
Wu Yi 已提交
101
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
102

103
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
104 105 106 107 108 109 110

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
111 112
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
113 114
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
                        print(
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
                                   float(avg_loss_val), float(acc_val)))
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
157 158
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
159 160 161 162
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
163
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
164
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
165 166
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
167
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
168
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
169 170 171 172 173 174 175 176
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
177 178


179 180 181 182
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
183 184 185
    if save_dirname is None:
        return

186
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
187 188
    exe = fluid.Executor(place)

189 190 191 192 193 194
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
195 196 197
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
198 199 200 201 202 203 204 205 206 207 208 209 210

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
211 212


213
def main(use_cuda, parallel, nn_type, combine):
214 215 216
    save_dirname = None
    model_filename = None
    params_filename = None
217 218
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
219
        if combine == True:
220 221
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
222

武毅 已提交
223
    # call train() with is_local argument to run distributed train
224 225 226 227
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
228
        save_dirname=save_dirname,
229 230
        model_filename=model_filename,
        params_filename=params_filename)
231 232 233
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
234 235
        model_filename=model_filename,
        params_filename=params_filename)
236 237 238 239 240 241


class TestRecognizeDigits(unittest.TestCase):
    pass


242
def inject_test_method(use_cuda, parallel, nn_type, combine):
243 244 245 246 247 248
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
249
                main(use_cuda, parallel, nn_type, combine)
250

251 252 253 254
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
255 256 257 258 259 260

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
261 262
        if use_cuda and not core.is_compiled_with_cuda():
            continue
263 264
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
265 266
                inject_test_method(use_cuda, parallel, nn_type, True)

267
    # Two unit-test for saving parameters as separate files
268
    inject_test_method(False, False, 'mlp', False)
269
    inject_test_method(False, False, 'conv', False)
270 271 272 273 274 275


inject_all_tests()

if __name__ == '__main__':
    unittest.main()