recurrent_op.h 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"
Y
Yan Chunwei 已提交
18
#include "paddle/operators/net_op.h"
19
#include "paddle/operators/rnn/recurrent_op_utils.h"
Y
Yan Chunwei 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
L
liaogang 已提交
25
// TODO(Yan Chunwei):
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
33
 public:
Y
Yi Wang 已提交
34 35
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
36

Y
Yu Yang 已提交
37 38
  void Init(rnn::Argument* arg,
            std::unique_ptr<framework::OperatorBase>* stepnet) {
Y
Yan Chunwei 已提交
39 40 41 42
    PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
    arg_ = arg;
    stepnet_ = stepnet;
  }
Y
Yan Chunwei 已提交
43 44 45 46

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
47
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
48

49
 protected:
Y
Yan Chunwei 已提交
50 51 52 53 54 55
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Y
Yi Wang 已提交
56
  void CreateScopes(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
57

Y
Yi Wang 已提交
58 59 60 61
  const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
62 63
  }

Y
Yi Wang 已提交
64
  void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
65

66
 private:
Y
Yu Yang 已提交
67
  std::unique_ptr<framework::OperatorBase>* stepnet_;
Y
Yan Chunwei 已提交
68
  rnn::Argument* arg_;
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
  mutable size_t seq_len_;
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
83
 public:
Y
Yu Yang 已提交
84 85
  void Init(rnn::Argument* arg,
            std::unique_ptr<framework::OperatorBase>* stepnet) {
Y
Yan Chunwei 已提交
86 87 88 89
    PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
    arg_ = std::move(arg);
    stepnet_ = stepnet;
  }
Y
Yan Chunwei 已提交
90

Y
Yi Wang 已提交
91 92
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
93

Y
Yi Wang 已提交
94 95
  void LinkBootMemoryGradients(framework::Scope* step_scopes,
                               bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
96 97 98 99

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
100
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
101

102
 protected:
Y
Yi Wang 已提交
103 104 105 106
  inline const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
107 108
  }

109
 private:
Y
Yan Chunwei 已提交
110
  rnn::Argument* arg_;
Y
Yan Chunwei 已提交
111
  mutable size_t seq_len_;
Y
Yu Yang 已提交
112
  std::unique_ptr<framework::OperatorBase>* stepnet_;
Y
Yan Chunwei 已提交
113 114
};

Y
Yu Yang 已提交
115
class RecurrentOp : public framework::OperatorBase {
116
 public:
Y
Yu Yang 已提交
117 118 119
  RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs,
              const framework::VariableNameMap& outputs,
              const framework::AttributeMap& attrs);
Y
Yu Yang 已提交
120 121 122 123 124 125 126

  RecurrentOp(const RecurrentOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
    // TODO(yuyang18): Implement copy ctor well.
    PADDLE_THROW("Not implemented");
  }
Y
Yan Chunwei 已提交
127
  /**
Y
Yu Yang 已提交
128 129
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
130 131 132
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
133

Y
Yi Wang 已提交
134
  void Run(const framework::Scope& scope,
L
liaogang 已提交
135
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
136 137 138
    alg_.Run(scope, dev_ctx);
  }

Y
Yu Yang 已提交
139 140 141 142
  void set_stepnet(std::unique_ptr<OperatorBase> net) {
    stepnet_ = std::move(net);
  }
  const OperatorBase& stepnet() const { return *stepnet_; }
Y
Yan Chunwei 已提交
143

Y
Yan Chunwei 已提交
144 145
  static const rnn::ArgumentName kArgName;

146
 private:
Y
Yan Chunwei 已提交
147
  RecurrentAlgorithm alg_;
Y
Yan Chunwei 已提交
148
  rnn::Argument arg_;
Y
Yu Yang 已提交
149
  std::unique_ptr<OperatorBase> stepnet_;
Y
Yan Chunwei 已提交
150 151
};

Y
Yu Yang 已提交
152
class RecurrentGradientOp : public framework::OperatorBase {
153
 public:
Y
Yu Yang 已提交
154 155 156
  RecurrentGradientOp(const std::string& type,
                      const framework::VariableNameMap& inputs,
                      const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
157
                      const framework::AttributeMap& attrs);
Y
Yan Chunwei 已提交
158

Y
Yu Yang 已提交
159 160 161 162 163 164 165
  RecurrentGradientOp(const RecurrentGradientOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
    // TODO(yuyang18): Implement Copy ctor.
    PADDLE_THROW("Not Implemented");
  }

Y
Yan Chunwei 已提交
166 167 168
  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
169 170 171
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
172

Y
Yi Wang 已提交
173
  void Run(const framework::Scope& scope,
L
liaogang 已提交
174
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
175 176 177 178 179
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

Y
Yu Yang 已提交
180 181 182 183
  void set_stepnet(std::unique_ptr<OperatorBase> net) {
    stepnet_ = std::move(net);
  }
  const OperatorBase& stepnet() const { return *stepnet_; }
Y
Yan Chunwei 已提交
184

185
 private:
Y
Yan Chunwei 已提交
186
  RecurrentGradientAlgorithm alg_;
Y
Yu Yang 已提交
187
  std::unique_ptr<OperatorBase> stepnet_;
Y
Yan Chunwei 已提交
188
  rnn::Argument arg_;
Y
Yan Chunwei 已提交
189 190 191 192
};

}  // namespace operators
}  // namespace paddle