jit_code.h 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/math/jit_gen.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;

class VMulJitCode : public JitCode {
 public:
  DECLARE_JIT_CODE(VMulJitCode);
  explicit VMulJitCode(int d, size_t code_size = 256 * 1024,
                       void* code_ptr = nullptr)
      : JitCode(code_size, code_ptr), num_(d) {}
  static bool init(int d);
  void generate() override;

 private:
  int num_;
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
  reg64_t param3{abi_param3};

  xmm_t xmm_src1 = xmm_t(0);
  xmm_t xmm_src2 = xmm_t(1);
T
tensor-tang 已提交
49
  xmm_t xmm_dst = xmm_t(1);
50 51 52

  ymm_t ymm_src1 = ymm_t(0);
  ymm_t ymm_src2 = ymm_t(1);
T
tensor-tang 已提交
53
  ymm_t ymm_dst = ymm_t(1);
54 55
};

T
tensor-tang 已提交
56 57 58
class VAddJitCode : public JitCode {
 public:
  DECLARE_JIT_CODE(VAddJitCode);
T
tensor-tang 已提交
59
  explicit VAddJitCode(int d, bool with_relu, size_t code_size = 256 * 1024,
T
tensor-tang 已提交
60
                       void* code_ptr = nullptr)
T
tensor-tang 已提交
61
      : JitCode(code_size, code_ptr), num_(d), with_relu_(with_relu) {}
T
tensor-tang 已提交
62 63 64 65 66
  static bool init(int d);
  void generate() override;

 private:
  int num_;
T
tensor-tang 已提交
67
  bool with_relu_;
T
tensor-tang 已提交
68 69 70 71 72 73
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};
  reg64_t param3{abi_param3};

  xmm_t xmm_src1 = xmm_t(0);
  xmm_t xmm_src2 = xmm_t(1);
T
tensor-tang 已提交
74 75
  xmm_t xmm_dst = xmm_t(1);
  xmm_t xmm_zero = xmm_t(2);
T
tensor-tang 已提交
76 77 78

  ymm_t ymm_src1 = ymm_t(0);
  ymm_t ymm_src2 = ymm_t(1);
T
tensor-tang 已提交
79 80
  ymm_t ymm_dst = ymm_t(1);
  ymm_t ymm_zero = ymm_t(2);
T
tensor-tang 已提交
81 82
};

83 84 85 86 87
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle