paddle_api.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

/*! \file paddle_api.h
 */

/*! \mainpage Paddle Inference APIs
 * \section intro_sec Introduction
 * The Paddle inference library aims to offer an high performance inference SDK
 * for Paddle users.
 */

#include <cassert>
#include <memory>
#include <string>
#include <vector>

/*! \namespace paddle
 */
namespace paddle {

/** paddle data type.
 */
enum PaddleDType {
  FLOAT32,
  INT64,
  INT32,
  // TODO(Superjomn) support more data types if needed.
};

/**
 * \brief Memory manager for `PaddleTensor`.
 *
 * The PaddleBuf holds a buffer for data input or output. The memory can be
 * allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
 * should be reused for better performance.
 *
 * For user allocated memory, the following API can be used:
 * - PaddleBuf(void* data, size_t length) to set an external memory by
 * specifying the memory address and length.
 * - Reset(void* data, size_t length) to reset the PaddleBuf with an external
 *memory.
 * ATTENTION, for user allocated memory, deallocation should be done by users
 *externally after the program finished. The PaddleBuf won't do any allocation
 *or deallocation.
 *
 * To have the PaddleBuf allocate and manage the memory:
 * - PaddleBuf(size_t length) will allocate a memory of size `length`.
 * - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
 *  if the allocated memory is larger than `length`, nothing will done.
 *
 * Usage:
 *
 * Let PaddleBuf manage the memory internally.
 * \code{cpp}
 * const int num_elements = 128;
 * PaddleBuf buf(num_elements * sizeof(float));
 * \endcode
 *
 * Or
 * \code{cpp}
 * PaddleBuf buf;
 * buf.Resize(num_elements * sizeof(float));
 * \endcode
 * Works the exactly the same.
 *
 * One can also make the `PaddleBuf` use the external memory.
 * \code{cpp}
 * PaddleBuf buf;
 * void* external_memory = new float[num_elements];
 * buf.Reset(external_memory, num_elements*sizeof(float));
 * ...
 * delete[] external_memory; // manage the memory lifetime outside.
 * \endcode
 */
class PaddleBuf {
 public:
  /** PaddleBuf allocate memory internally, and manage it.
   */
  explicit PaddleBuf(size_t length)
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  /** Set external memory, the PaddleBuf won't manage it.
   */
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  /** Copy only available when memory is managed externally.
   */
  explicit PaddleBuf(const PaddleBuf&);

  /** Resize the memory.
   */
  void Resize(size_t length);
  /** Reset to external memory, with address and length set.
   */
  void Reset(void* data, size_t length);
  /** Tell whether the buffer is empty.
   */
  bool empty() const { return length_ == 0; }
  /** Get the data's memory address.
   */
  void* data() const { return data_; }
  /** Get the memory length.
   */
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }
  PaddleBuf& operator=(const PaddleBuf&);
  PaddleBuf& operator=(PaddleBuf&&);
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

/** Basic input and output data structure for PaddlePredictor.
 */
struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
  std::vector<std::vector<size_t>> lod;  // Tensor+LoD equals LoDTensor
};

enum class PaddlePlace { kUNK = -1, kCPU, kGPU };

/** Tensor without copy, currently only supports `AnalysisPredictor`.
 */
class ZeroCopyTensor {
 public:
  void Reshape(const std::vector<int>& shape);

  /** Get the memory in CPU or GPU with specific data type, should Reshape first
   * to tell the data size.
   * Once can directly call this data to feed the data.
   * This is for write the input tensor.
   */
  template <typename T>
  T* mutable_data(PaddlePlace place);
  /** Get the memory directly, will return the place and element size by
   * pointer.
   * This is for reading the output tensor.
   */
  template <typename T>
  T* data(PaddlePlace* place, int* size) const;

  template <typename T>
  void copy_from_cpu(const T* data);

  template <typename T>
  void copy_to_cpu(T* data);

  std::vector<int> shape() const;

  void SetLoD(const std::vector<std::vector<size_t>>& x);
  std::vector<std::vector<size_t>> lod() const;
  const std::string& name() const { return name_; }
  void SetPlace(PaddlePlace place, int device = -1) {
    place_ = place;
    device_ = device;
  }

  PaddleDType type() const;

 protected:
  explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
  void SetName(const std::string& name) { name_ = name; }
  void* FindTensor() const;

 private:
  std::string name_;
  bool input_or_output_;
  friend class AnalysisPredictor;
  void* scope_{nullptr};
  // The corresponding tensor pointer inside Paddle workspace is cached for
  // performance.
  mutable void* tensor_{nullptr};
  PaddlePlace place_;
  PaddleDType dtype_;
  int device_;
};

/** A simple Inference API for Paddle.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor() = default;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  /** Predict an record.
   * The caller should be responsible for allocating and releasing the memory of
   * `inputs`. `inputs` should be available until Run returns. Caller should be
   * responsible for the output tensor's buffer, either allocated or passed from
   * outside.
   */
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;

  /** \brief Get input names of the model
   */
  virtual std::vector<std::string> GetInputNames() { return {}; }

  /** \brief Get output names of the model
   */
  virtual std::vector<std::string> GetOutputNames() { return {}; }

  /** \brief Get a mutable tensor directly.
   *
   * NOTE Only works in AnalysisPredictor.
   *
   * One can also use this to modify any temporary variable related tensors in
   * the predictor.
   *
   */
  virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string& name) {
    return nullptr;
  }
  /**
   * \brief Get an immutable tensor without copy.
   *
   * NOTE Only works in AnalysisPredictor.
   * One can use this API to get any temporary tensors in the predictor and
   * read it.
   */
  virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string& name) {
    return nullptr;
  }
  /**
   * \brief Run the predictor with zero-copied inputs and outputs.
   *
   * NOTE Only works in AnalysisPredictor.
   *
   * This will save the IO copy for transfering inputs and outputs to predictor
   * workspace and get some performance improvement.
   * To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)`
   * and then use the `GetInputTensor` and `GetOutputTensor` to directly write
   * or read the input/output tensors.
   */
  virtual bool ZeroCopyRun() { return false; }

  /** Clone a predictor that share the model weights, the Cloned predictor
   * should be thread-safe.
   */
  virtual std::unique_ptr<PaddlePredictor> Clone() = 0;

  /** Destroy the Predictor.
   */
  virtual ~PaddlePredictor() = default;

  /** \brief Get the serialized model program that executes in inference phase.
   * Its data type is ProgramDesc, which is a protobuf message.
   */
  virtual std::string GetSerializedProgram() const {
    assert(false);  // Force raise error.
    return "NotImplemented";
  }

  /** The common configs for all the predictors.
   */
  struct Config {
    std::string model_dir; /*!< path to the model directory. */
  };
};

struct NativeConfig : public PaddlePredictor::Config {
  // GPU related fields.
  bool use_gpu{false};
  int device{0};
  float fraction_of_gpu_memory{
      -1.f}; /*!< Change to a float in (0,1] if needed. */

  // Specify the exact path of program and parameter files.
  std::string prog_file;
  std::string param_file;

  /** Specify the variable's name of each input if input tensors don't follow
   * the
   * `feeds` and `fetches` of the phase `save_inference_model`.
   */
  bool specify_input_name{false};

  /** Set and get the number of cpu math library threads.
   */
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
    cpu_math_library_num_threads_ = cpu_math_library_num_threads;
  }
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

 protected:
  // number of cpu math library (such as MKL, OpenBlas) threads for each
  // instance.
  int cpu_math_library_num_threads_{1};
};

/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
 * config);
 *
 * \brief A factory to help create different predictors.
 *
 * Usage:
 *
 * \code{.cpp}
 * NativeConfig config;
 * ... // change the configs.
 * auto native_predictor = CreatePaddlePredictor(config);
 * \endcode
 *
 * FOR EXTENSION DEVELOPER:
 * Different predictors are designated by config type. Similar configs can be
 * merged, but there shouldn't be a huge config containing different fields for
 * more than one kind of predictors.
 */
template <typename ConfigT>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

/** NOTE The following APIs are too trivial, we will discard it in the following
 * versions.
 */
enum class PaddleEngineKind {
  kNative = 0,        /*!< Use the native Fluid facility. */
  kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */
  kAnalysis,          /*!< More optimization. */
  kAnakin             /*!< Use Anakin for inference, not mature yet. */
};

template <typename ConfigT, PaddleEngineKind engine>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

int PaddleDtypeSize(PaddleDType dtype);

std::string get_version();

}  // namespace paddle