voc.py 7.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

import xml.etree.ElementTree as ET

from ppdet.core.workspace import register, serializable

from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class VOCDataSet(DetDataset):
    """
    Load dataset with PascalVOC format.

    Notes:
    `anno_path` must contains xml file and image file path for annotations.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): voc annotation file path.
        sample_num (int): number of samples to load, -1 means all.
        label_list (str): if use_default_label is False, will load
            mapping between category and class index.
    """

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 label_list=None):
        super(VOCDataSet, self).__init__(
            dataset_dir=dataset_dir,
            image_dir=image_dir,
            anno_path=anno_path,
            data_fields=data_fields,
            sample_num=sample_num)
        self.label_list = label_list

61
    def parse_dataset(self, ):
Q
qingqing01 已提交
62 63 64 65
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        # mapping category name to class id
66
        # first_class:0, second_class:1, ...
Q
qingqing01 已提交
67 68 69 70 71 72 73 74 75
        records = []
        ct = 0
        cname2cid = {}
        if self.label_list:
            label_path = os.path.join(self.dataset_dir, self.label_list)
            if not os.path.exists(label_path):
                raise ValueError("label_list {} does not exists".format(
                    label_path))
            with open(label_path, 'r') as fr:
76
                label_id = 0
Q
qingqing01 已提交
77 78 79 80
                for line in fr.readlines():
                    cname2cid[line.strip()] = label_id
                    label_id += 1
        else:
81
            cname2cid = pascalvoc_label()
Q
qingqing01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

        with open(anno_path, 'r') as fr:
            while True:
                line = fr.readline()
                if not line:
                    break
                img_file, xml_file = [os.path.join(image_dir, x) \
                        for x in line.strip().split()[:2]]
                if not os.path.exists(img_file):
                    logger.warn(
                        'Illegal image file: {}, and it will be ignored'.format(
                            img_file))
                    continue
                if not os.path.isfile(xml_file):
                    logger.warn('Illegal xml file: {}, and it will be ignored'.
                                format(xml_file))
                    continue
                tree = ET.parse(xml_file)
                if tree.find('id') is None:
                    im_id = np.array([ct])
                else:
                    im_id = np.array([int(tree.find('id').text)])

                objs = tree.findall('object')
                im_w = float(tree.find('size').find('width').text)
                im_h = float(tree.find('size').find('height').text)
                if im_w < 0 or im_h < 0:
                    logger.warn(
                        'Illegal width: {} or height: {} in annotation, '
                        'and {} will be ignored'.format(im_w, im_h, xml_file))
                    continue
                gt_bbox = []
                gt_class = []
                gt_score = []
                difficult = []
                for i, obj in enumerate(objs):
                    cname = obj.find('name').text
                    _difficult = int(obj.find('difficult').text)
                    x1 = float(obj.find('bndbox').find('xmin').text)
                    y1 = float(obj.find('bndbox').find('ymin').text)
                    x2 = float(obj.find('bndbox').find('xmax').text)
                    y2 = float(obj.find('bndbox').find('ymax').text)
                    x1 = max(0, x1)
                    y1 = max(0, y1)
                    x2 = min(im_w - 1, x2)
                    y2 = min(im_h - 1, y2)
                    if x2 > x1 and y2 > y1:
                        gt_bbox.append([x1, y1, x2, y2])
                        gt_class.append([cname2cid[cname]])
                        gt_score.append([1.])
                        difficult.append([_difficult])
                    else:
                        logger.warn(
                            'Found an invalid bbox in annotations: xml_file: {}'
                            ', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                xml_file, x1, y1, x2, y2))
                gt_bbox = np.array(gt_bbox).astype('float32')
                gt_class = np.array(gt_class).astype('int32')
                gt_score = np.array(gt_score).astype('float32')
                difficult = np.array(difficult).astype('int32')

                voc_rec = {
                    'im_file': img_file,
                    'im_id': im_id,
                    'h': im_h,
                    'w': im_w
                } if 'image' in self.data_fields else {}

                gt_rec = {
                    'gt_class': gt_class,
                    'gt_score': gt_score,
                    'gt_bbox': gt_bbox,
                    'difficult': difficult
                }
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        voc_rec[k] = v

                if len(objs) != 0:
                    records.append(voc_rec)

                ct += 1
                if self.sample_num > 0 and ct >= self.sample_num:
                    break
        assert len(records) > 0, 'not found any voc record in %s' % (
            self.anno_path)
        logger.debug('{} samples in file {}'.format(ct, anno_path))
        self.roidbs, self.cname2cid = records, cname2cid

    def get_label_list(self):
        return os.path.join(self.dataset_dir, self.label_list)


175
def pascalvoc_label():
Q
qingqing01 已提交
176
    labels_map = {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        'aeroplane': 0,
        'bicycle': 1,
        'bird': 2,
        'boat': 3,
        'bottle': 4,
        'bus': 5,
        'car': 6,
        'cat': 7,
        'chair': 8,
        'cow': 9,
        'diningtable': 10,
        'dog': 11,
        'horse': 12,
        'motorbike': 13,
        'person': 14,
        'pottedplant': 15,
        'sheep': 16,
        'sofa': 17,
        'train': 18,
        'tvmonitor': 19
Q
qingqing01 已提交
197 198
    }
    return labels_map