executor.cc 17.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

17
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
G
gongweibao 已提交
23
#include "paddle/fluid/operators/detail/macros.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
26

D
dzhwinter 已提交
27
DECLARE_bool(benchmark);
28
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
29 30 31

namespace paddle {
namespace framework {
X
Xin Pan 已提交
32 33 34 35 36
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
37

Q
Qiao Longfei 已提交
38 39
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
S
sneaxiy 已提交
40 41 42
    : prog_(prog),
      block_id_(block_id),
      ref_cnts_(GetNonPersistableReferenceCount<int>(prog, block_id)) {}
Y
Yu Yang 已提交
43

Q
Qiao Longfei 已提交
44 45 46
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
47

D
dzhwinter 已提交
48
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
49

W
Wu Yi 已提交
50
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
51
void Executor::BeginPass() {
Y
Yancey1989 已提交
52 53 54
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
      ->SendBeginPass();
Y
Yancey1989 已提交
55 56 57
}

void Executor::EndPass() {
Y
Yancey1989 已提交
58 59 60
  ::paddle::operators::distributed::RPCClient::GetInstance<
      ::paddle::operators::distributed::GRPCClient>()
      ->SendEndPass();
W
Wu Yi 已提交
61 62 63
}
#endif

Y
Stash  
Yu Yang 已提交
64
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
65
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
66
    var->GetMutable<LoDTensor>();
67
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
68
    var->GetMutable<SelectedRows>();
69
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
70
    var->GetMutable<FeedFetchList>();
71
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
72
    var->GetMutable<FeedFetchList>();
73
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
74
    var->GetMutable<std::vector<framework::Scope>>();
75
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
76
    var->GetMutable<LoDRankTable>();
77
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
78
    var->GetMutable<LoDTensorArray>();
79
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
80
    var->GetMutable<platform::PlaceList>();
81
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
82
    var->GetMutable<ReaderHolder>();
83 84
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
85 86
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
87 88
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
89
        "Variable type %d is not in "
F
fengjiayi 已提交
90
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
91
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
92
        var_type);
Q
QI JUN 已提交
93 94 95
  }
}

L
Liu Yiqun 已提交
96 97 98
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
99 100 101 102 103 104 105 106 107 108 109 110 111 112

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
113
        InitializeVariable(ptr, var->GetType());
114 115 116 117
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
118
        InitializeVariable(ptr, var->GetType());
119 120 121 122 123 124 125
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
126
      InitializeVariable(ptr, var->GetType());
127 128 129 130 131 132
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

Y
Yu Yang 已提交
133
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
134
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
135
  platform::RecordBlock b(block_id);
136
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
Q
Qiao Longfei 已提交
137 138
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
139 140
}

141 142 143 144 145 146 147
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
148
    const BlockDesc& block,
L
Liu Yiqun 已提交
149
    const std::map<std::string, const LoDTensor*>& feed_targets,
150 151
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
152
  for (auto* op : block.AllOps()) {
153 154
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
155
      // The input variable's name of feed_op should be feed_holder_name.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

171
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
172
      // When feed operator are present, so should be feed_holder.
173 174 175 176 177 178 179
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
180 181 182 183 184 185 186 187 188 189 190 191
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
192 193
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
194 195
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
196
  for (auto* op : block.AllOps()) {
197 198
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
199
      // The output variable's name of fetch_op should be fetch_holder_name.
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

215
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
216
      // When fetch operator are present, so should be fetch_holder.
217 218 219 220 221 222 223
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
224 225 226 227 228 229
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
230 231
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
232 233
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
234
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
235
  platform::RecordBlock b(kProgramId);
236
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
237
  bool has_feed_ops =
238
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
239
  bool has_fetch_ops =
240
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
241 242

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
243
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
244
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
245 246
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
247
  }
248 249
  auto* global_block = copy_program->MutableBlock(0);

250
  if (!has_feed_ops) {
251 252
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
253
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
254 255 256
    feed_holder->SetPersistable(true);

    int i = 0;
257
    for (auto& feed_target : (*feed_targets)) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

273
  if (!has_fetch_ops) {
274 275
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
276
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
277 278 279
    fetch_holder->SetPersistable(true);

    int i = 0;
280
    for (auto& fetch_target : (*fetch_targets)) {
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

296
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
297 298 299
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
300 301
}

Q
Qiao Longfei 已提交
302 303
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Q
Qiyang Min 已提交
304 305
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
306 307 308 309 310
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiyang Min 已提交
311
  return ctx;
Y
Yu Yang 已提交
312 313
}

T
refine  
typhoonzero 已提交
314
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
T
typhoonzero 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
    const ProgramDesc& program, const std::vector<int>& block_ids) {
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  for (auto& bid : block_ids) {
    auto* ctx = new ExecutorPrepareContext(program, bid);
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
  }
  return result;
}

Y
Yu Yang 已提交
329
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
330 331
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
Y
Yu Yang 已提交
332 333 334 335
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
336 337
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
338
  }
Y
Yu Yang 已提交
339

S
sneaxiy 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  std::shared_ptr<std::vector<framework::LoDTensor*>> erase_tensors(
      new std::vector<framework::LoDTensor*>());
  int64_t max_memory_size = GetEagerDeletionThreshold();

  std::unique_ptr<GarbageCollector<Tensor>> gc;
  if (max_memory_size >= 0) {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      gc.reset(new DefaultStreamGarbageCollector<Tensor>(
          boost::get<platform::CUDAPlace>(place_), max_memory_size));
    } else {
#endif
      gc.reset(new CPUGarbageCollector<Tensor>(
          boost::get<platform::CPUPlace>(place_), max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
359
  for (auto& op : ctx->ops_) {
Q
qiaolongfei 已提交
360
    VLOG(4) << place_ << " " << op->DebugStringEx(local_scope);
361
    op->Run(*local_scope, place_);
S
sneaxiy 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

#ifdef PADDLE_WITH_CUDA
    if (gc != nullptr) {
      std::vector<std::string> erase_vars;
      for (auto& input : op->Inputs()) {
        for (auto& input_name : input.second) {
          auto it = ctx->ref_cnts_.find(input_name);
          if (it == ctx->ref_cnts_.end()) continue;
          if (it->second == 1) {  // should delete it
            erase_vars.emplace_back(input_name);
            ctx->ref_cnts_.erase(input_name);
          } else {
            --(it->second);
          }
        }
      }

      for (auto& output : op->Outputs()) {
        for (auto& output_name : output.second) {
          auto it = ctx->ref_cnts_.find(output_name);
          if (it == ctx->ref_cnts_.end()) continue;
          if (it->second == 1) {
            erase_vars.emplace_back(output_name);
            ctx->ref_cnts_.erase(output_name);
          } else {
            --(it->second);
          }
        }
      }

      if (!erase_vars.empty()) {
        std::vector<framework::LoDTensor*> erase_tensors;
        for (auto& name : erase_vars) {
          auto* var = local_scope->FindVar(name);
          if (var == nullptr) continue;
          if (var->IsType<framework::LoDTensor>()) {
            auto* tensor = var->GetMutable<framework::LoDTensor>();
            erase_tensors.push_back(tensor);
          }
        }
        if (!erase_tensors.empty()) gc->Add(erase_tensors);
      }
    }
#endif
Y
Yang Yang 已提交
406

Y
Yu Yang 已提交
407 408 409 410 411
    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
  }
S
sneaxiy 已提交
412 413 414 415 416 417

  if (gc != nullptr)
    gc->Wait();
  else
    platform::DeviceContextPool::Instance().Get(place_)->Wait();

Q
qiaolongfei 已提交
418
  if (local_scope != scope) {
Y
Yu Yang 已提交
419
    scope->DeleteScope(local_scope);
420
  } else {
Q
qiaolongfei 已提交
421 422 423 424 425
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
426 427
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
428 429
      scope->DropKids();
    }
Y
Yu Yang 已提交
430
  }
Q
qiaolongfei 已提交
431

Y
Yu Yang 已提交
432 433 434 435 436 437 438 439
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

440 441
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
442
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
443 444 445
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
446 447
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

448
  PADDLE_ENFORCE(
449
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
450 451
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
452
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
453 454
      "Program in the prepared context should has fetch_ops.");

455 456 457 458 459
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
460 461
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
462 463 464
    }
  }

W
Wu Yi 已提交
465
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
466 467 468 469 470 471

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
472
      *(*fetch_targets)[fetch_target_name] =
473 474 475 476 477
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

478 479 480 481 482 483 484 485 486 487 488
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
489 490 491
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
492 493 494
#endif
}

Q
qijun 已提交
495 496
}  // namespace framework
}  // namespace paddle