engine.h 6.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
Y
Yan Chunwei 已提交
22 23
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
24
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
41
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
42 43 44 45 46 47
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
    const nvinfer1::Weights& get() { return w_; }

48 49
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
50 51 52 53
   private:
    nvinfer1::Weights w_;
  };

Y
Yan Chunwei 已提交
54 55
  TensorRTEngine(int max_batch, int max_workspace,
                 cudaStream_t* stream = nullptr,
Y
Yan Chunwei 已提交
56 57 58
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Y
Yan Chunwei 已提交
59
        stream_(stream ? stream : &default_stream_),
Y
Yan Chunwei 已提交
60 61 62 63 64
        logger_(logger) {}

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
65
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
66

67
  void Execute(int batch_size) override;
Y
Yan Chunwei 已提交
68 69 70 71

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
72
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
87 88
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
89 90 91 92 93

  // GPU memory address for an ITensor with specific name. One can operate on
  // these memory directly for acceleration, for example, output the converted
  // data directly to the buffer to save data copy overhead.
  // NOTE this should be used after calling `FreezeNetwork`.
Y
Yan Chunwei 已提交
94 95 96
  Buffer& buffer(const std::string& name) override;

  cudaStream_t* stream() { return stream_; }
Y
Yan Chunwei 已提交
97 98

  // Fill an input from CPU memory with name and size.
99
  void SetInputFromCPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
100 101
  // TODO(Superjomn) is this method necessary given that buffer(xxx) can be
  // accessed directly. Fill an input from GPU memory with name and size.
102
  void SetInputFromGPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
103
  // Get an output called name, the output of tensorrt is in GPU, so this method
104
  // Return the output's GPU memory address without copy.
Y
Yan Chunwei 已提交
105
  void* GetOutputInGPU(const std::string& name);
106
  // Copy data into dst inside the GPU device.
107
  void GetOutputInGPU(const std::string& name, void* dst);
Y
Yan Chunwei 已提交
108 109
  // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
  // to CPU.
110
  void GetOutputInCPU(const std::string& name, void* dst);
L
Luo Tao 已提交
111 112 113 114
  // Fill an ITensor into map itensor_map_.
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
115 116 117

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
118 119
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
Y
Yan Chunwei 已提交
120 121 122 123

 private:
  // the max batch size
  int max_batch_;
124 125
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
126 127 128
  // the max memory size the engine uses
  int max_workspace_;
  cudaStream_t* stream_;
Y
Yan Chunwei 已提交
129 130
  // If stream_ is not set from outside, hold its own stream.
  cudaStream_t default_stream_;
Y
Yan Chunwei 已提交
131 132
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
133
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
134 135
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
136 137
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
Y
Yan Chunwei 已提交
138 139 140 141

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
142 143 144 145 146
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

170 171 172 173 174
/*
 * Helper to control the TensorRT engine's creation and deletion.
 */
class TRT_EngineManager {
 public:
Y
Yan Chunwei 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  bool HasEngine(const std::string& name) const {
    return engines_.count(name) != 0;
  }

  // Get an engine called `name`.
  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

  // Create or get an engine called `name`
  TensorRTEngine* Create(int max_batch, int max_workspace, cudaStream_t* stream,
                         const std::string& name) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, stream);
    engines_[name].reset(p);
    return p;
190 191 192
  }

  void DeleteALl() {
Y
Yan Chunwei 已提交
193 194
    for (auto& item : engines_) {
      item.second.reset(nullptr);
195 196 197 198
    }
  }

 private:
Y
Yan Chunwei 已提交
199
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
200 201
};

Y
Yan Chunwei 已提交
202 203 204
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle