layers.py 168.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33 34 35 36 37 38 39 40
__all__ = [
    "full_matrix_projection",
    "AggregateLevel",
    "ExpandLevel",
    "identity_projection",
    "dotmul_projection",
    "dotmul_operator",
    "repeat_layer",
41
    "seq_reshape_layer",
Q
qijun 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    "table_projection",
    "mixed_layer",
    "data_layer",
    "embedding_layer",
    "fc_layer",
    "grumemory",
    "pooling_layer",
    "lstmemory",
    "last_seq",
    "first_seq",
    "cos_sim",
    "hsigmoid",
    "conv_projection",
L
Luo Tao 已提交
55
    "mse_cost",
Q
qijun 已提交
56 57 58 59 60 61 62 63 64
    "regression_cost",
    'classification_cost',
    "LayerOutput",
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
99
    'warp_ctc_layer',
Q
qijun 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'print_layer',
Y
yuan 已提交
114
    'priorbox_layer',
115
    'cross_channel_norm_layer',
Q
qijun 已提交
116
    'spp_layer',
D
dangqingqing 已提交
117
    'pad_layer',
L
Luo Tao 已提交
118
    'eos_layer',
D
dangqingqing 已提交
119
    'smooth_l1_cost',
120
    'layer_support',
Q
qijun 已提交
121
]
Z
zhangjinchao01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134


class LayerType(object):
    """
    Layer type enumerations.
    """

    DATA = "data"
    MIXED_LAYER = "mixed"
    LSTMEMORY = "lstmemory"
    GRUMEMORY = "gated_recurrent"
    SEQUENCE_LAST_INSTANCE = "seqlastins"
    SEQUENCE_FIRST_INSTANCE = "seqfirstins"
135
    SEQUENCE_RESHAPE = "seqreshape"
Z
zhangjinchao01 已提交
136 137 138 139
    POOLING_MAX = "max"
    POOLING_AVG = 'average'
    FC_LAYER = "fc"
    COST = 'cost'
140 141
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
142 143
    HSIGMOID = 'hsigmoid'
    CONV_LAYER = "conv"
144
    CONVTRANS_LAYER = "convt"
145 146 147
    EXCONV_LAYER = "exconv"
    EXCONVTRANS_LAYER = "exconvt"
    CUDNNCONV_LAYER = "cudnn_conv"
Z
zhangjinchao01 已提交
148 149 150 151 152 153 154 155
    POOL_LAYER = "pool"
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
156
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
157 158 159 160 161 162 163

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
164
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
165 166 167
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
168
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
169
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
170
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
171 172 173 174 175 176 177 178 179 180 181

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
182
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
183
    BLOCK_EXPAND = "blockexpand"
184
    MAXOUT = "maxout"
Q
qijun 已提交
185
    SPP_LAYER = "spp"
D
dangqingqing 已提交
186
    PAD_LAYER = "pad"
Z
zhangjinchao01 已提交
187

188
    PRINT_LAYER = "print"
Y
yuan 已提交
189
    PRIORBOX_LAYER = "priorbox"
190

Z
zhangjinchao01 已提交
191
    CTC_LAYER = "ctc"
192
    WARP_CTC_LAYER = "warp_ctc"
Z
zhangjinchao01 已提交
193 194
    CRF_LAYER = "crf"
    CRF_DECODING_LAYER = "crf_decoding"
195
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
196 197 198 199 200 201 202 203

    RANK_COST = "rank-cost"
    LAMBDA_COST = "lambda_cost"
    HUBER = "huber"
    CROSS_ENTROPY = "multi-class-cross-entropy"
    CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
    SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
    MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
X
xuwei06 已提交
204
    SUM_COST = "sum_cost"
D
dangqingqing 已提交
205
    SMOOTH_L1 = "smooth_l1"
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
    EACH_TIMESTEP = 'non-seq'
    EACH_SEQUENCE = 'seq'


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
251
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
252 253
    """

Q
qijun 已提交
254 255 256 257 258 259 260 261 262
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
263
                 reverse=None):
Z
zhangjinchao01 已提交
264 265
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
266
        assert size is not None
Z
zhangjinchao01 已提交
267 268 269
        assert LayerType.is_layer_type(layer_type)
        self.name = name
        self.layer_type = layer_type
270 271
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
272 273 274 275 276 277 278 279
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
280
        self.reverse = reverse
Z
zhangjinchao01 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

294 295 296 297 298 299 300 301
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
302 303 304

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
305
DEVICE = 'device'
Z
zhangjinchao01 已提交
306 307 308


def layer_support(*attrs):
309
    attrs_list = list(attrs)
310
    attrs_list.append(DEVICE)
Q
qijun 已提交
311

Z
zhangjinchao01 已提交
312 313 314
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
315
            for attr in attrs_list:
Z
zhangjinchao01 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
332 333 334 335 336
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
376 377
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
378 379 380 381
    proj.origin = input
    return proj


382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
412 413
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
414 415 416 417
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
457 458
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    proj.origin = input
    return proj


def identity_projection(input, offset=None):
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
494
    :type input: LayerOutput
Z
zhangjinchao01 已提交
495 496
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
497
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
498 499 500 501 502 503
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
Q
qijun 已提交
504 505
        proj = IdentityOffsetProjection(
            input_layer_name=input.name, offset=offset)
Z
zhangjinchao01 已提交
506 507 508 509
        proj.origin = input
    return proj


X
xuwei06 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
532
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
533 534 535 536
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
537
@wrap_param_attr_default()
538
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
539
    """
540
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

554 555 556 557 558 559 560
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
561 562
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
563
    proj.origin = input
564
    return proj
Z
zhangjinchao01 已提交
565

566 567

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
568 569
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
570

Z
zhangjinchao01 已提交
571
    .. math::
L
Luo Tao 已提交
572
       out.row[i] += scale * (a.row[i] .* b.row[i])
573

Z
zhangjinchao01 已提交
574 575
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
576

Z
zhangjinchao01 已提交
577
    The example usage is:
578

Z
zhangjinchao01 已提交
579
    .. code-block:: python
580

L
Luo Tao 已提交
581
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
582

583 584 585 586
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
587 588
    :param scale: config scalar, default value is one.
    :type scale: float
589 590
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
591
    """
592 593 594
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
595
    a = kwargs.get('x', a)  # For Backward capacity.
596 597 598 599 600 601
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
602
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
603
    op.origin = [a, b]
604
    return op
Z
zhangjinchao01 已提交
605

606

Z
zhangjinchao01 已提交
607
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
608 609 610
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
647 648 649 650 651 652
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
666
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
683 684 685 686 687 688 689
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
690 691 692 693 694
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

695
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
696 697 698 699 700 701 702 703
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
704
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
705
            self.inputs.append(other)
706 707 708 709
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
710 711 712 713 714 715 716 717
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

718
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
719 720
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
721
        assert len(self.inputs) != 0
722
        ml = MixedLayer(
Z
zhangjinchao01 已提交
723 724 725 726 727
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
728
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
729 730 731
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
732
        self.finalized = True
Z
zhangjinchao01 已提交
733 734 735 736 737 738


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
739 740 741 742 743
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
788 789 790 791 792 793
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
794
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
795 796 797 798 799 800 801 802
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
803
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
804 805 806 807 808 809 810
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
811
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
812 813 814 815 816

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
817
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
818
    :type height: int|None
L
Luo Tao 已提交
819
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
820
    :type width: int|None
Z
zhangjinchao01 已提交
821 822
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
823
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
824 825
    :rtype: LayerOutput
    """
Q
qijun 已提交
826 827 828 829
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
830 831
        height=height,
        width=width,
Q
qijun 已提交
832
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
855
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
856 857
    :rtype: LayerOutput
    """
Q
qijun 已提交
858 859 860 861 862 863
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
864 865 866 867 868 869 870 871 872
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
873 874 875 876 877 878 879
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
880 881 882 883 884 885 886 887 888 889 890 891
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
892
    which is equal to:
Z
zhangjinchao01 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
915
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
916 917 918 919
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
920
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
921 922
        param_attr = [param_attr]
    else:
923
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
924 925 926 927
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

928
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
929 930

    Layer(
Q
qijun 已提交
931 932 933
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
934 935 936 937 938
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
939 940 941
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
942

943

944 945 946 947
@wrap_name_default("print")
def print_layer(input, name=None):
    """
    Print the output value of input layers. This layer is useful for debugging.
948 949 950 951 952

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
953
    :return: LayerOutput
954
    """
955 956 957 958 959
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
960 961 962 963

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
964
        inputs=[l.name for l in input], )
965
    # this layer don't return anything, can not be input of other layer.
966

Z
zhangjinchao01 已提交
967

Y
yuan 已提交
968
@wrap_name_default("priorbox")
G
gaoyuan 已提交
969
def priorbox_layer(input,
G
gaoyuan 已提交
970
                   image,
G
gaoyuan 已提交
971 972 973 974 975
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
976 977 978 979 980 981 982
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
983 984
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
985 986 987 988 989 990 991 992 993 994 995
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
996
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
997 998 999
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1000
        inputs=[input.name, image.name],
Y
yuan 已提交
1001 1002 1003 1004 1005 1006
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1007 1008
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1009
        parents=[input, image],
G
gaoyuan 已提交
1010 1011 1012
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1013

1014 1015
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1016 1017 1018 1019 1020
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1021

G
gaoyuan 已提交
1022 1023 1024 1025 1026 1027 1028 1029
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1030
    assert input.num_filters is not None
G
gaoyuan 已提交
1031 1032
    Layer(
        name=name,
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1046 1047
    return LayerOutput(
        name,
1048
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1049 1050 1051 1052 1053
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1054 1055 1056 1057
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1058 1059 1060 1061
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
Z
zhangjinchao01 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
                  agg_level=AggregateLevel.EACH_TIMESTEP,
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
                                agg_level=AggregateLevel.EACH_SEQUENCE)

C
caoying03 已提交
1075 1076
    :param agg_level: AggregateLevel.EACH_TIMESTEP or
                      AggregateLevel.EACH_SEQUENCE
Z
zhangjinchao01 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1089
    :return: LayerOutput object.
Y
Yu Yang 已提交
1090
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1091 1092
    """
    extra_dict = dict()
1093
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1094 1095
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1096 1097 1098 1099
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1100 1101 1102 1103 1104 1105 1106 1107
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
1108
        **extra_dict)
Z
zhangjinchao01 已提交
1109

Q
qijun 已提交
1110 1111
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1112

Q
qijun 已提交
1113

Z
zhangjinchao01 已提交
1114 1115
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1116
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1117 1118 1119
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1129 1130 1131 1132 1133 1134 1135 1136
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1137
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1138

L
luotao02 已提交
1139
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1140

L
luotao02 已提交
1141
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1142

L
luotao02 已提交
1143
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1144

L
luotao02 已提交
1145
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1146 1147


C
caoying03 已提交
1148
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1149
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1150 1151 1152 1153
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1154

C
caoying03 已提交
1155
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1156 1157
    to config a simple plain lstm layer.

C
caoying03 已提交
1158 1159 1160 1161
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1185
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1186 1187 1188 1189 1190 1191
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
Z
zhangjinchao01 已提交
1202

Q
qijun 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1213

Q
qijun 已提交
1214 1215 1216 1217 1218
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1219

Z
zhangjinchao01 已提交
1220 1221 1222

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1223
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1224 1225 1226
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1227 1228 1229 1230 1231 1232 1233 1234
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1256 1257
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1258 1259 1260 1261 1262

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1263 1264 1265
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1266 1267 1268 1269 1270

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1271
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1272
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1273 1274 1275
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1276

C
caoying03 已提交
1277 1278 1279
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1291
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1307 1308 1309
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1310
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1311 1312 1313 1314
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1315 1316 1317 1318 1319 1320 1321 1322 1323
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
Z
zhangjinchao01 已提交
1324

Q
qijun 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1334

Q
qijun 已提交
1335 1336 1337 1338 1339
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1340

Z
zhangjinchao01 已提交
1341 1342 1343

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1344 1345 1346
def last_seq(input,
             name=None,
             agg_level=AggregateLevel.EACH_TIMESTEP,
1347
             stride=-1,
Z
zhangjinchao01 已提交
1348 1349 1350 1351
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

L
Luo Tao 已提交
1352 1353 1354 1355
    If stride > 0, this layer slides a window whose size is determined by stride, 
    and return the last value of the window as the output. Thus, a long sequence 
    will be shorten. Note that for sequence with sub-sequence, the default value 
    of stride is -1.
1356

L
Luo Tao 已提交
1357 1358 1359 1360 1361 1362
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1363 1364 1365 1366 1367
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1368
    :param stride: window size.  
1369
    :type stride: Int
Z
zhangjinchao01 已提交
1370 1371
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1372
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1373 1374
    :rtype: LayerOutput
    """
1375 1376 1377 1378 1379 1380
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

1381 1382 1383
    if agg_level == AggregateLevel.EACH_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1384 1385 1386 1387 1388
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1389
        stride=stride,
Q
qijun 已提交
1390 1391 1392 1393 1394 1395
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1396 1397 1398 1399


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1400 1401 1402
def first_seq(input,
              name=None,
              agg_level=AggregateLevel.EACH_TIMESTEP,
1403
              stride=-1,
Z
zhangjinchao01 已提交
1404 1405 1406 1407
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

L
Luo Tao 已提交
1408 1409 1410 1411
    If stride > 0, this layer slides a window whose size is determined by stride, 
    and return the first value of the window as the output. Thus, a long sequence 
    will be shorten. Note that for sequence with sub-sequence, the default value 
    of stride is -1.
1412

L
Luo Tao 已提交
1413 1414 1415 1416 1417 1418
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1419 1420 1421 1422 1423
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1424
    :param stride: window size.  
1425
    :type stride: Int
Z
zhangjinchao01 已提交
1426 1427
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1428
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1429 1430
    :rtype: LayerOutput
    """
1431 1432 1433 1434 1435 1436 1437

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

1438 1439 1440
    if agg_level == AggregateLevel.EACH_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1441 1442 1443 1444 1445
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1446
        stride=stride,
Q
qijun 已提交
1447 1448 1449 1450 1451 1452
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1453 1454 1455 1456 1457 1458


class ExpandLevel(object):
    FROM_TIMESTEP = AggregateLevel.EACH_TIMESTEP
    FROM_SEQUENCE = AggregateLevel.EACH_SEQUENCE

1459

Z
zhangjinchao01 已提交
1460 1461
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1462 1463
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
                 name=None,
                 bias_attr=False,
                 expand_level=ExpandLevel.FROM_TIMESTEP,
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
                             expand_level=ExpandLevel.FROM_TIMESTEP)

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1493
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1503 1504 1505 1506 1507 1508
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1509 1510


X
xuwei06 已提交
1511 1512
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1513
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
X
xuwei06 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1525
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1544 1545 1546 1547 1548 1549 1550
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

X
xuwei06 已提交
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
    the dimension of each instance is M, and the input reshape_size is N, then the 
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1635
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1636 1637
    :rtype: LayerOutput
    """
1638
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1639
    assert len(input) == 2
1640 1641 1642 1643 1644 1645 1646
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1647 1648 1649 1650
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1651 1652 1653 1654 1655 1656
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1657 1658


L
liaogang 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1675
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1676

L
liaogang 已提交
1677
    :param   input:        A input layer.
L
liaogang 已提交
1678
    :type    input:        LayerOutput.
L
liaogang 已提交
1679
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1680
    :type    out_size_x:   int|None
L
liaogang 已提交
1681
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1682
    :type    out_size_y:   int|None
L
liaogang 已提交
1683
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1684
    :type    name:         None|basestring
L
liaogang 已提交
1685
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1686 1687 1688 1689 1690 1691 1692
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1693
    assert input.num_filters is not None
L
liaogang 已提交
1694
    num_channels = input.num_filters
Q
qijun 已提交
1695 1696 1697 1698 1699 1700 1701
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1702
                channels=num_channels)),
Q
qijun 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1712

Z
zhangjinchao01 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1740
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1741 1742
    :rtype: LayerOutput
    """
1743 1744 1745
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1746 1747 1748
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1749
        inputs=[weight.name, input.name],
Q
qijun 已提交
1750 1751 1752
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1753 1754 1755 1756 1757 1758


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1759
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1760 1761

    .. math::
1762
       y  = w x
Z
zhangjinchao01 已提交
1763

1764 1765 1766 1767 1768
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1784
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1785 1786
    :rtype: LayerOutput
    """
1787 1788 1789
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1790 1791 1792 1793
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
1794 1795 1796
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
1797 1798 1799 1800 1801 1802


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1803
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1822
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1823 1824 1825 1826 1827 1828
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
1829 1830 1831
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1832 1833


1834 1835
@wrap_name_default()
@layer_support()
H
Haonan 已提交
1836
def rotate_layer(input, height, width, name=None, layer_attr=None):
1837
    """
H
Haonan 已提交
1838 1839
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1840 1841

    .. math::
H
Haonan 已提交
1842
       y(j,i,:) = x(M-i-1,j,:)
1843

H
Haonan 已提交
1844
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1845 1846 1847 1848 1849 1850

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
1851 1852
                          height=100,
                          width=100)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1866 1867 1868
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
1869
        width=width,
H
Haonan 已提交
1870 1871 1872 1873 1874 1875 1876 1877
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1878 1879


Z
zhangjinchao01 已提交
1880 1881
@wrap_name_default()
@layer_support()
1882
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
1883 1884 1885 1886
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1887
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1888 1889 1890 1891 1892
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
1893

1894 1895
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1896

L
Luo Tao 已提交
1897 1898 1899 1900 1901 1902
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1915
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1916 1917
    :rtype: LayerOutput
    """
1918
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1919 1920 1921 1922 1923 1924
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1925
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1926
    else:
1927 1928
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1929 1930 1931 1932 1933 1934
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1935
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
1936
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
1937

1938

Z
zhangjinchao01 已提交
1939 1940
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
1941
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
1942
@layer_support()
Q
qijun 已提交
1943 1944
def hsigmoid(input,
             label,
1945
             num_classes=None,
Q
qijun 已提交
1946 1947 1948 1949
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
1961
                        label=data_layer)
Z
zhangjinchao01 已提交
1962 1963 1964 1965 1966 1967 1968

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
1969
    :type num_classes: int|None
L
luotao02 已提交
1970 1971
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
1972 1973 1974
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
1975 1976
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
1977 1978
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1979
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1980 1981 1982 1983
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1984 1985 1986 1987 1988 1989 1990 1991 1992
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1993 1994 1995
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

1996 1997 1998 1999 2000
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2001 2002
    ipts_for_layer = []
    parents = []
2003
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2004
        assert isinstance(each_input, LayerOutput)
2005
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2006 2007 2008 2009
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2010
    l = Layer(
Z
zhangjinchao01 已提交
2011 2012 2013 2014 2015
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2016 2017 2018
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2019

2020

Z
zhangjinchao01 已提交
2021 2022 2023 2024 2025
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2042 2043
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2044
    """
2045
    Convolution layer for image. Paddle can support both square and non-square
2046
    input currently.
Z
zhangjinchao01 已提交
2047 2048 2049 2050

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2051

2052
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2053
    and non-square input currently.
2054

X
xuwei06 已提交
2055
    The details of convolution transpose layer,
2056 2057 2058
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2059 2060 2061 2062
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2063 2064 2065
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2066
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2067 2068
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2069

L
Luo Tao 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2080 2081 2082 2083
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2084 2085 2086
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2087 2088 2089
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2090
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2091 2092 2093 2094 2095
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2096 2097 2098
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2099 2100
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2101 2102 2103
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2118 2119
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2120
    :param layer_type: specify the layer_type, default is None. If trans=True,
2121 2122 2123
                       layer_type has to be "exconvt" or "cudnn_convt", 
                       otherwise layer_type has to be either "exconv" or 
                       "cudnn_conv"
2124
    :type layer_type: String
D
dangqingqing 已提交
2125
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2126 2127 2128 2129 2130
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2131

Z
zhangjinchao01 已提交
2132
    if filter_size_y is None:
2133 2134 2135 2136 2137 2138
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2139
    if stride_y is None:
2140 2141 2142 2143 2144 2145
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2146
    if padding_y is None:
2147 2148 2149 2150 2151 2152 2153 2154
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2155
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2156 2157 2158 2159
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2160

2161 2162
    if layer_type:
        if trans:
2163
            assert layer_type in ["exconvt", "cudnn_convt"]
2164 2165 2166 2167 2168
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2169

X
xuwei06 已提交
2170
    l = Layer(
Z
zhangjinchao01 已提交
2171
        name=name,
Q
qijun 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2184 2185 2186 2187
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2188
        type=lt,
Q
qijun 已提交
2189 2190 2191 2192 2193 2194 2195 2196
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2197 2198 2199 2200


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2211 2212
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2213 2214 2215 2216 2217 2218 2219
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2248
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2249
    :type padding: int
2250 2251
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2252 2253 2254 2255
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2256
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2257
    :type pool_size: int
2258 2259
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2260 2261
    :param num_channels: number of input channel.
    :type num_channels: int
2262
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2263 2264
                      MaxPooling.
    :type pool_type: BasePoolingType
2265
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2266
    :type stride: int
2267 2268
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2269 2270
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2271 2272 2273 2274
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2275 2276
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2287
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2288 2289 2290
        if (
    isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name
2291 2292 2293 2294 2295

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2296
    l = Layer(
Z
zhangjinchao01 已提交
2297 2298
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2311
                    padding_y=padding_y))
Q
qijun 已提交
2312
        ],
2313
        ceil_mode=ceil_mode,
Q
qijun 已提交
2314 2315 2316 2317 2318 2319 2320
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2321 2322


Q
qijun 已提交
2323 2324
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2325 2326 2327 2328 2329 2330
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2331 2332 2333 2334 2335
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344
    The example usage is:

    ..  code-block:: python

        spp = spp_layer(input=data, 
                        pyramid_height=2, 
                        num_channels=16, 
                        pool_type=MaxPooling())

Q
qijun 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2373
    l = Layer(
Q
qijun 已提交
2374 2375
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2376 2377 2378 2379 2380
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2381
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2393 2394 2395 2396
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2397
    l = Layer(
Q
qijun 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2417 2418 2419 2420


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2421 2422 2423 2424 2425 2426
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2427
                      layer_attr=None):
Z
zhangjinchao01 已提交
2428
    """
2429
    Response normalization across feature maps.
D
dangqingqing 已提交
2430 2431
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2432

L
Luo Tao 已提交
2433 2434 2435 2436 2437 2438
    The example usage is:

    ..  code-block:: python
    
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2439
    :param name: layer name.
D
dangqingqing 已提交
2440
    :type name: None|basestring
Z
zhangjinchao01 已提交
2441 2442
    :param input: layer's input.
    :type input: LayerOutput
2443
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2444
    :type size: int
D
dangqingqing 已提交
2445
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2446
    :type scale: float
D
dangqingqing 已提交
2447
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2448 2449 2450 2451 2452
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2453
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2454 2455 2456
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2457
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2458 2459 2460 2461 2462 2463 2464 2465


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2466 2467 2468 2469 2470 2471 2472
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2494 2495 2496 2497 2498 2499
    The example usage is:

    ..  code-block:: python
    
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2514
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2542
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2562
    l = Layer(
Z
zhangjinchao01 已提交
2563
        name=name,
Q
qijun 已提交
2564 2565
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2566 2567 2568 2569 2570 2571
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2572
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2573

Q
qijun 已提交
2574 2575 2576 2577 2578 2579 2580
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2608
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2609 2610 2611 2612 2613 2614
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2615 2616 2617
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2618 2619 2620 2621 2622 2623


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2624
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2647 2648 2649
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2650 2651

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2652 2653
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2668
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2669 2670 2671 2672 2673 2674
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2675
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2676 2677 2678 2679 2680 2681 2682
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2683
    l = Layer(
Q
qijun 已提交
2684 2685 2686
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2687 2688
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2689
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2690

Q
qijun 已提交
2691 2692 2693 2694 2695 2696 2697
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2698 2699 2700 2701 2702


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2703
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2704 2705 2706 2707
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2708 2709 2710 2711 2712 2713
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2714 2715 2716
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2717
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2718 2719 2720 2721
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2722
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2723 2724 2725 2726 2727 2728 2729 2730
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2731
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2732 2733

    def __is_type__(o, tp):
2734
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2756 2757
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2758

Q
qijun 已提交
2759 2760
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2761

2762 2763
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2764

Z
zhangjinchao01 已提交
2765
    Layer(
Q
qijun 已提交
2766 2767
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2768 2769
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2770
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2771
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780

    sz = 0
    for each_input in input:
        if each_input.size is not None:
            sz += each_input.size
        else:
            sz = None
            break

Q
qijun 已提交
2781 2782 2783 2784 2785 2786 2787 2788
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2789 2790
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2791
@wrap_bias_attr_default(has_bias=False)
2792 2793 2794 2795 2796
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2797 2798 2799 2800 2801 2802

    Inputs: 
      - a = [a1, a2, ..., an]
      - b = [b1, b2, ..., bn]
      - Note that the length of a and b should be the same.
        
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    Output: [a1, b1, a2, b2, ..., an, bn]

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2821 2822 2823 2824
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2846
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
2847 2848
def memory(name,
           size,
2849
           memory_name=None,
Q
qijun 已提交
2850 2851 2852 2853
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)


    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
2891 2892 2893
    :type name: basestring
    :param size: size of memory.
    :type size: int
2894 2895 2896
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
Z
zhangjinchao01 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2907
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
2918 2919
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
2930 2931

    lout = LayerOutput(
2932
        name=memory_name,
Q
qijun 已提交
2933 2934 2935
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
2936 2937 2938 2939
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
2940 2941
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2942 2943 2944
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953
def lstm_step_layer(input,
                    state,
                    size,
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
2954 2955 2956 2957 2958 2959
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

L
luotao02 已提交
2960
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
2961

L
luotao02 已提交
2962
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
2963

L
luotao02 已提交
2964
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
2965

L
luotao02 已提交
2966
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
2967

L
luotao02 已提交
2968
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
2969 2970


L
luotao02 已提交
2971
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3010
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3020 3021 3022
        size=size,
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3023

Q
qijun 已提交
3024 3025 3026 3027 3028 3029 3030
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3031 3032 3033


@wrap_bias_attr_default()
W
wangyang59 已提交
3034
@wrap_param_attr_default()
Q
qijun 已提交
3035
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3036 3037 3038
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3039 3040 3041 3042 3043 3044 3045
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3046
                   param_attr=None,
Q
qijun 已提交
3047
                   layer_attr=None):
Z
zhangjinchao01 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3058 3059
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3060
    :param layer_attr:
D
dangqingqing 已提交
3061
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3062 3063 3064 3065 3066 3067 3068 3069
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3070 3071 3072 3073
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3074
        # backward model compatibility.
3075
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3076 3077 3078 3079
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3080
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3081
    return LayerOutput(
Q
qijun 已提交
3082 3083
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3084
        parents=[input, output_mem],
Q
qijun 已提交
3085 3086
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3087 3088 3089 3090 3091 3092


@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3093 3094 3095 3096
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3106
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3107 3108 3109 3110 3111 3112 3113
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3114 3115 3116 3117 3118 3119 3120
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3121

Q
qijun 已提交
3122 3123 3124 3125 3126
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3127 3128 3129 3130 3131 3132 3133


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3134 3135 3136 3137 3138 3139 3140
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3141
    """
3142 3143
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3172
    :return: LayerOutput object.
3173
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3174
    """
Q
qijun 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3190 3191 3192 3193 3194 3195 3196


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3197

Z
zhangjinchao01 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3217

Z
zhangjinchao01 已提交
3218 3219 3220 3221 3222 3223 3224
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3225 3226 3227 3228 3229
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3230
                    is_generating=False):
Z
zhangjinchao01 已提交
3231
    """
C
caoying03 已提交
3232 3233 3234 3235 3236
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3281 3282
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3283
    :type reverse: bool
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3295
    :param is_generating: If is generating, none of input type should be LayerOutput;
3296
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3297
                          be LayerOutput.
L
Luo Tao 已提交
3298

L
Luo Tao 已提交
3299
    : type is_generating: bool
3300

D
dangqingqing 已提交
3301
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3312
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3313 3314 3315 3316 3317 3318

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3319 3320 3321 3322 3323 3324 3325 3326 3327
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

Q
qijun 已提交
3328
    assert (targetInlink == None or targetInlink_in_inlinks())
3329
    targetInlinkName = None if targetInlink == None \
Y
Yu Yang 已提交
3330 3331
        else targetInlink.name if isinstance(targetInlink, LayerOutput) \
        else targetInlink.input.name
3332

Z
zhangjinchao01 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3343 3344
        name=name,
        in_links=map(map_in_links, in_links),
3345 3346
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
Z
zhangjinchao01 已提交
3347
    in_args = []
3348
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3349 3350 3351 3352
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3353
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3354 3355
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3356
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3357 3358
        else:
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
Z
zhangjinchao01 已提交
3368 3369 3370
                mix += identity_projection(mem)
            in_args.append(mem)

L
Luo Tao 已提交
3371
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3372

Z
zhangjinchao01 已提交
3373 3374 3375 3376 3377 3378 3379
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3380
        ot.reverse = reverse
Z
zhangjinchao01 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3393

Z
zhangjinchao01 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3420 3421 3422
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3423
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3447
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3448 3449 3450 3451
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3462

3463

H
Haonan 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3500

Z
zhangjinchao01 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3517 3518
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3519 3520 3521 3522 3523 3524
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3525
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3526 3527
    :rtype: LayerOutput
    """
Q
qijun 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3539 3540 3541


@wrap_name_default()
Q
qijun 已提交
3542 3543 3544 3545 3546 3547 3548
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3549
                num_results_per_sample=None):
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3561
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3562 3563 3564 3565 3566 3567
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3568
                               input=[StaticInput(encoder_last)],
3569 3570
                               bos_id=0,
                               eos_id=1,
3571
                               beam_size=5)
3572 3573 3574 3575 3576 3577 3578 3579 3580

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3581
                 step, and it is applied to sequences with arbitrary length by
3582 3583 3584 3585 3586 3587
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
    :param input: Input data for the recurrent unit
3588
    :type input: list
3589 3590 3591
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3592
                   symbol is essential, since it is used to initialize the RNN
3593 3594 3595 3596 3597 3598 3599 3600
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3601 3602
    :param max_length: Max generated sequence length.
    :type max_length: int
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3613 3614
    :return: The generated word index.
    :rtype: LayerOutput
3615 3616
    """

Z
zhangjinchao01 已提交
3617 3618 3619 3620 3621
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3622
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3623 3624 3625 3626 3627 3628
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3629 3630
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInput)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3647 3648 3649 3650 3651 3652
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)

        return predict

Q
qijun 已提交
3663
    tmp = recurrent_group(
L
Luo Tao 已提交
3664 3665 3666 3667
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3668
        is_generating=True)
3669

Z
zhangjinchao01 已提交
3670 3671
    return tmp

Q
qijun 已提交
3672

3673 3674
def __cost_input__(input, label, weight=None):
    """
3675
    inputs and parents for cost layers.
3676 3677 3678 3679
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3680
        assert weight.size == 1
3681 3682 3683
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3684

Z
zhangjinchao01 已提交
3685 3686

@wrap_name_default()
L
luotao1 已提交
3687
@layer_support()
L
Luo Tao 已提交
3688
def mse_cost(input, label, weight=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3689
    """
L
Luo Tao 已提交
3690 3691 3692 3693
    mean squared error cost:

    ..  math::

L
Luo Tao 已提交
3694
        \frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
3695 3696

    :param name: layer name.
3697
    :type name: basestring
Z
zhangjinchao01 已提交
3698
    :param input: Network prediction.
3699
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3700
    :param label: Data label.
3701 3702 3703 3704
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
luotao1 已提交
3705 3706
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3707
    :return: LayerOutput object.
3708
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3709
    """
3710 3711
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3712 3713 3714 3715 3716
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
3717
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3718 3719


L
Luo Tao 已提交
3720 3721 3722
regression_cost = mse_cost


Z
zhangjinchao01 已提交
3723
@wrap_name_default("cost")
3724
@layer_support()
Q
qijun 已提交
3725 3726 3727 3728
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
L
Liang Zhao 已提交
3729
                        top_k=None,
3730 3731
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
Z
zhangjinchao01 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3741 3742 3743
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
Liang Zhao 已提交
3744 3745
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
3746
    :param evaluator: Evaluator method.
3747 3748
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3749
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3750 3751 3752 3753 3754
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3755 3756 3757

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3758 3759 3760 3761 3762
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

L
Liang Zhao 已提交
3773
        e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
Z
zhangjinchao01 已提交
3774

3775
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
3776 3777 3778 3779 3780
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
3781
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3782

3783

Q
qijun 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
3793 3794
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3805 3806
       op = conv_operator(img=input1,
                          filter=input2,
3807
                          filter_size=3,
Z
zhangjinchao01 已提交
3808 3809 3810
                          num_filters=64,
                          num_channels=64)

3811 3812 3813 3814
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
3815 3816
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
3817 3818 3819
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
3820
    :type filter_size_y: int
3821 3822
    :param num_filters: channel of output data.
    :type num_filters: int
3823 3824
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
3825
    :param stride: The x dimension of the stride.
L
luotao02 已提交
3826
    :type stride: int
Z
zhangjinchao01 已提交
3827
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
3828
    :type stride_y: int
Z
zhangjinchao01 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
3842

3843 3844
    if num_channels is None:
        num_channels = img.num_filters
3845 3846 3847

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
3848
        filter.size = filter_size * filter_size_y * num_filters * num_channels
3849

3850 3851 3852
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
3864

3865
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
3866 3867
    return op

Q
qijun 已提交
3868

3869
@wrap_param_attr_default()
Q
qijun 已提交
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
3880 3881
                    param_attr=None,
                    trans=False):
3882 3883 3884 3885 3886 3887 3888 3889 3890
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
3891
       proj = conv_projection(input=input1,
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
3906 3907
    :param num_channels: channel of input data.
    :type num_channels: int
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
3920 3921
    :param trans: whether it is convTrans or conv
    :type trans: boolean
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
3952
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
3953 3954 3955 3956 3957
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

3958 3959 3960
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
3973 3974 3975 3976

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
3977

D
dangqingqing 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
3995

D
dangqingqing 已提交
3996
    For example,
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4019 4020

    The simply usage is:
D
dangqingqing 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4082
@wrap_name_default()
L
luotao1 已提交
4083 4084
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4096 4097 4098 4099
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4100 4101 4102 4103 4104

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4105
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4106 4107 4108

    :param name: layer name
    :type name: basestring
4109 4110
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4111
    :param b: input layer b.
4112
    :type b: LayerOutput
L
luotao1 已提交
4113 4114
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4115
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4116 4117
    :rtype: LayerOutput
    """
4118 4119
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4120 4121 4122
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4123
        inputs=[a.name, b.name],
Q
qijun 已提交
4124
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4125

Q
qijun 已提交
4126 4127
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4128 4129 4130 4131 4132


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4133
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4134
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4135 4136 4137 4138 4139 4140 4141 4142
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4143 4144 4145 4146 4147
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4148
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4149 4150

    In this formular:
4151 4152
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4153 4154
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4155
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4156 4157 4158 4159 4160

    The simple usage is:

    .. code-block:: python

4161
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4162 4163 4164

    :param name: layer name
    :type name: basestring
4165 4166 4167 4168
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4169
    :param size: the layer dimension.
L
luotao02 已提交
4170
    :type size: int.
Z
zhangjinchao01 已提交
4171 4172 4173
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4174
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4175 4176 4177 4178 4179 4180
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4181
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4182 4183
    :rtype: LayerOutput
    """
4184
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4185 4186 4187 4188 4189 4190
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4191 4192 4193 4194
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4195 4196 4197 4198 4199 4200


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4201
@layer_support()
Q
qijun 已提交
4202 4203
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4204
                       select=None,
Q
qijun 已提交
4205 4206
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4207 4208 4209
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4210 4211 4212
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4223
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4224 4225 4226 4227 4228

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4229 4230
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4231
                   If is None, acts exactly like fc_layer.
4232
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4245
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4246 4247 4248 4249
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4250
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4251 4252
        param_attr = [param_attr]
    else:
4253
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4254 4255 4256 4257
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4258 4259 4260 4261
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4262
    Layer(
Q
qijun 已提交
4263 4264 4265
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4266 4267 4268
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4269
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4270 4271 4272 4273
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4274 4275 4276 4277 4278 4279 4280
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4281 4282 4283


@wrap_name_default()
L
luotao1 已提交
4284 4285
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4300 4301
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4302
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4303 4304
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4305
    l = Layer(
Z
zhangjinchao01 已提交
4306 4307 4308
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4309 4310 4311
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4312 4313 4314


@wrap_name_default()
L
luotao1 已提交
4315
@layer_support()
Q
qijun 已提交
4316 4317 4318 4319
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4320
                          layer_attr=None):
Z
zhangjinchao01 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4342 4343
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4344
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4345 4346 4347 4348 4349 4350 4351 4352
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4353 4354 4355
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4356 4357 4358


@wrap_name_default()
L
luotao1 已提交
4359
@layer_support()
Q
qijun 已提交
4360
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4361
    """
4362 4363 4364 4365
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4366 4367 4368

    .. math::

4369
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4370

4371 4372 4373 4374 4375
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4376

4377
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4378 4379

    In this formular:
4380 4381 4382 4383 4384 4385
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4386 4387 4388 4389 4390

    The simple usage is:

    .. code-block:: python

4391
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4392 4393
                                       size=elem_dim)

4394 4395 4396 4397
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4398 4399 4400 4401
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4402 4403
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4404
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4405 4406
    :rtype: LayerOutput
    """
4407 4408 4409 4410
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4411
            size = vectors.size / weights.size
4412 4413
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4414 4415
    Layer(
        name=name,
4416
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4417
        size=size,
4418
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4419 4420 4421
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4422

4423

4424
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4425

4426

Z
zhangjinchao01 已提交
4427
@wrap_name_default()
L
luotao1 已提交
4428
@layer_support()
Z
zhangjinchao01 已提交
4429 4430 4431 4432 4433 4434 4435
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4436
                       num_channels=None,
L
luotao1 已提交
4437 4438
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4439 4440
    """
    Expand feature map to minibatch matrix.
4441
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4442
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4453
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4454 4455
    convolution neural network, and before recurrent neural network.

4456 4457 4458 4459
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4460
       block_expand = block_expand_layer(input=layer,
4461
                                         num_channels=128,
4462 4463 4464 4465 4466
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4467 4468
    :param input: The input layer.
    :type input: LayerOutput
4469 4470
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4485 4486
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4487
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4488 4489
    :rtype: LayerOutput
    """
4490 4491 4492
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4510 4511


4512 4513
@wrap_name_default()
@layer_support()
4514
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4515 4516 4517 4518 4519
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4520
    So groups should be larger than 1, and the num of channels should be able
4521 4522
    to devided by groups.

4523
    Please refer to Paper:
4524 4525 4526 4527
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4528

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4567 4568


Z
zhangjinchao01 已提交
4569
@wrap_name_default()
L
luotao1 已提交
4570
@layer_support()
Q
qijun 已提交
4571 4572 4573 4574 4575
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4576
              layer_attr=None):
Z
zhangjinchao01 已提交
4577 4578 4579 4580 4581
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4582 4583
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4584 4585
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4586 4587 4588 4589 4590 4591 4592 4593

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

Z
zhangjinchao01 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602
    The simple usage:

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4603
    :param input: The input layer.
Z
zhangjinchao01 已提交
4604 4605 4606
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4607
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4608
    :type size: int
4609 4610
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4611 4612
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4613 4614
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4615
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4616 4617 4618 4619
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4620 4621 4622 4623 4624
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4625
    Layer(
4626 4627 4628 4629
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4630
        inputs=[input.name, label.name],
Q
qijun 已提交
4631
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4632 4633
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4634

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
    <https://github.com/baidu-research/warp-ctc>` library, which is used in
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
    <https://arxiv.org/pdf/1512.02595v1.pdf>`, to compute Connectionist Temporal
    Classification (CTC) loss.

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
4658 4659 4660 4661 4662
          label needed by CTC, you need to use (num_classes + 1) as the input
          size. Thus, the size of both warp_ctc_layer and 'input' layer should
          be set to num_classes + 1.
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4663
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4664
          'linear' activation is expected instead in the 'input' layer.
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711

    The simple usage:

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
4712
@wrap_name_default()
4713
@wrap_param_attr_default()
L
luotao1 已提交
4714
@layer_support()
Q
qijun 已提交
4715 4716 4717 4718 4719 4720
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
L
luotao1 已提交
4721
              layer_attr=None):
Z
zhangjinchao01 已提交
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
    """
    A layer for calculating the cost of sequential conditional random
    field model.

    The simple usage:

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4737
    :type label: LayerOutput
Z
zhangjinchao01 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4747 4748
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4749
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4750 4751 4752 4753 4754
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4755 4756 4757 4758 4759 4760
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
4761

Q
qijun 已提交
4762
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
4763 4764 4765 4766
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4767 4768 4769 4770
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4771
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4772 4773 4774
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
4775 4776 4777 4778
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4779

4780

Z
zhangjinchao01 已提交
4781
@wrap_name_default()
4782
@wrap_param_attr_default()
L
luotao1 已提交
4783
@layer_support()
Q
qijun 已提交
4784 4785 4786 4787 4788
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4789
                       layer_attr=None):
Z
zhangjinchao01 已提交
4790 4791 4792 4793 4794 4795 4796
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

L
Luo Tao 已提交
4797 4798 4799 4800 4801 4802 4803
    The simple usage:

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4814 4815
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4816
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4817 4818 4819 4820 4821 4822
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

4823
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
4824 4825 4826 4827
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
4828 4829 4830 4831
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4832
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4833 4834 4835
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
4836 4837 4838 4839
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4840

Q
qijun 已提交
4841

Y
Yu Yang 已提交
4842
@wrap_act_default(act=SigmoidActivation())
4843 4844 4845
@wrap_bias_attr_default(has_bias=True)
@wrap_name_default()
@layer_support()
Q
qijun 已提交
4846 4847 4848
def nce_layer(input,
              label,
              num_classes,
Y
Yu Yang 已提交
4849
              act=None,
Q
qijun 已提交
4850 4851 4852 4853 4854 4855
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

       cost = nce_layer(input=layer1, label=layer2, weight=layer3,
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
4877
    :type num_classes: int
Y
Yu Yang 已提交
4878 4879
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
4880
    :param num_neg_samples: number of negative samples. Default is 10.
4881
    :type num_neg_samples: int
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
4901
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
4902 4903
    if not isinstance(act, BaseActivation):
        raise TypeError()
4904

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
    ipts_for_layer = []
    parents = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(each_input.name)
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
4920
    l = Layer(
4921 4922 4923 4924
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
4925
        active_type=act.name,
4926 4927 4928
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4929 4930
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
4931 4932 4933 4934 4935
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
4936

4937

Z
zhangjinchao01 已提交
4938 4939 4940
"""
following are cost Layers.
"""
4941 4942


Z
zhangjinchao01 已提交
4943
@wrap_name_default()
L
luotao1 已提交
4944
@layer_support()
Q
qijun 已提交
4945 4946 4947 4948 4949 4950 4951
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
4952
    """
4953
    A cost Layer for learning to rank using gradient descent. Details can refer
4954 4955
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
4956 4957 4958 4959 4960
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
4961
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
4962

L
luotao02 已提交
4963
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
4964

L
luotao02 已提交
4965
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

    The simple usage:

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4995 4996
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4997
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5010 5011 5012 5013 5014 5015
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5016

X
xuwei06 已提交
5017
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5018

5019

Z
zhangjinchao01 已提交
5020
@wrap_name_default()
L
luotao1 已提交
5021
@layer_support()
Q
qijun 已提交
5022 5023 5024 5025 5026 5027
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
    """
    lambdaCost for lambdaRank LTR approach.

    The simple usage:

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5040
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5052 5053 5054
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5055 5056 5057
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5058 5059
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5060
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5061 5062
    :rtype: LayerOutput
    """
5063 5064 5065
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5066 5067 5068 5069 5070 5071 5072
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5073

Q
qijun 已提交
5074 5075
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5076

5077

Z
zhangjinchao01 已提交
5078
@wrap_name_default()
L
luotao1 已提交
5079
@layer_support()
5080 5081 5082 5083 5084 5085
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5086 5087 5088 5089 5090
    """
    A loss layer for multi class entropy.

    .. code-block:: python

X
xuwei06 已提交
5091
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5092
                            label=label_layer)
Z
zhangjinchao01 已提交
5093 5094 5095 5096 5097 5098 5099

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5100 5101
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5102
    :type coeff: float.
5103 5104 5105 5106
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5107 5108
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5109
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5110 5111 5112
    :rtype: LayerOutput.
    """

5113
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5114 5115 5116
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5117
        inputs=ipts,
Q
qijun 已提交
5118 5119
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5120
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5121

5122

Z
zhangjinchao01 已提交
5123
@wrap_name_default()
L
luotao1 已提交
5124
@layer_support()
Q
qijun 已提交
5125 5126 5127 5128
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5129 5130
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5131 5132
    """
    A loss layer for multi class entropy with selfnorm.
5133
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5134 5135 5136

    .. code-block:: python

X
xuwei06 已提交
5137
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5138
                                          label=label_layer)
Z
zhangjinchao01 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5150 5151
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5152
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5153 5154
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5155 5156 5157 5158 5159 5160 5161
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5162

Q
qijun 已提交
5163 5164 5165 5166 5167
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5168

5169

X
xuwei06 已提交
5170 5171 5172 5173 5174 5175 5176 5177
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

    .. code-block:: python

L
Luo Tao 已提交
5178
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5189
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5190 5191 5192 5193 5194
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5195

Q
qijun 已提交
5196
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5197 5198


Z
zhangjinchao01 已提交
5199
@wrap_name_default()
L
luotao1 已提交
5200 5201
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5202 5203 5204 5205 5206
    """
    A loss layer for huber loss.

    .. code-block:: python

X
xuwei06 已提交
5207
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5208
                         label=label_layer)
Z
zhangjinchao01 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5218 5219
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5220
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5221 5222
    :rtype: LayerOutput.
    """
5223 5224 5225
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5226 5227 5228 5229 5230 5231
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5232
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5233

5234

Z
zhangjinchao01 已提交
5235
@wrap_name_default()
L
luotao1 已提交
5236
@layer_support()
Q
qijun 已提交
5237 5238 5239 5240
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5241
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5242 5243 5244 5245 5246
    """
    A loss layer for multi binary label cross entropy.

    .. code-block:: python

X
xuwei06 已提交
5247
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5248
                                               label=label_layer)
Z
zhangjinchao01 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5258 5259
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5260
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5261 5262 5263
    :rtype: LayerOutput
    """

5264 5265
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5282 5283 5284 5285 5286 5287 5288


@wrap_name_default()
@layer_support()
def smooth_l1_cost(input, label, name=None, layer_attr=None):
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5289
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

        mooth_{L1}(x) =
        \begin{cases}
        0.5x^2& \text{if} |x| < 1 \\
        |x|-0.5& \text{otherwise}
        \end{cases}

D
dangqingqing 已提交
5305 5306 5307
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

D
dangqingqing 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
    .. code-block:: python

       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)