preprocess.py 16.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import numpy as np
Z
zhiboniu 已提交
17
from keypoint_preprocess import get_affine_transform
18
from PIL import Image
Q
qingqing01 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38


def decode_image(im_file, im_info):
    """read rgb image
    Args:
        im_file (str|np.ndarray): input can be image path or np.ndarray
        im_info (dict): info of image
    Returns:
        im (np.ndarray):  processed image (np.ndarray)
        im_info (dict): info of processed image
    """
    if isinstance(im_file, str):
        with open(im_file, 'rb') as f:
            im_read = f.read()
        data = np.frombuffer(im_read, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    else:
        im = im_file
    im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
39
    im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
Q
qingqing01 已提交
40 41 42
    return im, im_info


Z
zhiboniu 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
class Resize_Mult32(object):
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

    def __init__(self, limit_side_len, limit_type, interp=cv2.INTER_LINEAR):
        self.limit_side_len = limit_side_len
        self.limit_type = limit_type
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, img):
        """
        Args:
            img (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        limit_side_len = self.limit_side_len
        h, w, c = img.shape

        # limit the max side
        if self.limit_type == 'max':
92 93
            if h > w:
                ratio = float(limit_side_len) / h
Z
zhiboniu 已提交
94
            else:
95
                ratio = float(limit_side_len) / w
Z
zhiboniu 已提交
96
        elif self.limit_type == 'min':
97 98
            if h < w:
                ratio = float(limit_side_len) / h
Z
zhiboniu 已提交
99
            else:
100
                ratio = float(limit_side_len) / w
Z
zhiboniu 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        elif self.limit_type == 'resize_long':
            ratio = float(limit_side_len) / max(h, w)
        else:
            raise Exception('not support limit type, image ')
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)

        im_scale_y = resize_h / float(h)
        im_scale_x = resize_w / float(w)
        return im_scale_y, im_scale_x


G
Guanghua Yu 已提交
116
class Resize(object):
Q
qingqing01 已提交
117 118 119 120 121 122 123
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

124
    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
Q
qingqing01 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
140 141
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
Q
qingqing01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class ShortSizeScale(object):
    """
    Scale images by short size.
    Args:
        short_size(float | int): Short size of an image will be scaled to the short_size.
        fixed_ratio(bool): Set whether to zoom according to a fixed ratio. default: True
        do_round(bool): Whether to round up when calculating the zoom ratio. default: False
        backend(str): Choose pillow or cv2 as the graphics processing backend. default: 'pillow'
    """

    def __init__(self,
                 short_size,
                 fixed_ratio=True,
                 keep_ratio=None,
                 do_round=False,
                 backend='pillow'):
        self.short_size = short_size
        assert (fixed_ratio and not keep_ratio) or (
            not fixed_ratio
        ), "fixed_ratio and keep_ratio cannot be true at the same time"
        self.fixed_ratio = fixed_ratio
        self.keep_ratio = keep_ratio
        self.do_round = do_round

        assert backend in [
            'pillow', 'cv2'
        ], "Scale's backend must be pillow or cv2, but get {backend}"

        self.backend = backend

    def __call__(self, img):
        """
        Performs resize operations.
        Args:
            img (PIL.Image): a PIL.Image.
        return:
            resized_img: a PIL.Image after scaling.
        """

        result_img = None

        if isinstance(img, np.ndarray):
            h, w, _ = img.shape
        elif isinstance(img, Image.Image):
            w, h = img.size
        else:
            raise NotImplementedError

        if w <= h:
            ow = self.short_size
            if self.fixed_ratio:  # default is True
                oh = int(self.short_size * 4.0 / 3.0)
            elif not self.keep_ratio:  # no
                oh = self.short_size
            else:
                scale_factor = self.short_size / w
                oh = int(h * float(scale_factor) +
                         0.5) if self.do_round else int(h * self.short_size / w)
                ow = int(w * float(scale_factor) +
                         0.5) if self.do_round else int(w * self.short_size / h)
        else:
            oh = self.short_size
            if self.fixed_ratio:
                ow = int(self.short_size * 4.0 / 3.0)
            elif not self.keep_ratio:  # no
                ow = self.short_size
            else:
                scale_factor = self.short_size / h
                oh = int(h * float(scale_factor) +
                         0.5) if self.do_round else int(h * self.short_size / w)
                ow = int(w * float(scale_factor) +
                         0.5) if self.do_round else int(w * self.short_size / h)

        if type(img) == np.ndarray:
            img = Image.fromarray(img, mode='RGB')

        if self.backend == 'pillow':
            result_img = img.resize((ow, oh), Image.BILINEAR)
        elif self.backend == 'cv2' and (self.keep_ratio is not None):
            result_img = cv2.resize(
                img, (ow, oh), interpolation=cv2.INTER_LINEAR)
        else:
            result_img = Image.fromarray(
                cv2.resize(
                    np.asarray(img), (ow, oh), interpolation=cv2.INTER_LINEAR))

        return result_img


G
Guanghua Yu 已提交
272
class NormalizeImage(object):
Q
qingqing01 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        is_channel_first (bool): if True: image shape is CHW, else: HWC
    """

    def __init__(self, mean, std, is_scale=True):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]

        if self.is_scale:
            im = im / 255.0
        im -= mean
        im /= std
        return im, im_info


G
Guanghua Yu 已提交
306
class Permute(object):
Q
qingqing01 已提交
307 308 309 310 311 312 313
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR 
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, ):
G
Guanghua Yu 已提交
314
        super(Permute, self).__init__()
Q
qingqing01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.transpose((2, 0, 1)).copy()
        return im, im_info


class PadStride(object):
330
    """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
Q
qingqing01 已提交
331
    Args:
332
        stride (bool): model with FPN need image shape % stride == 0
Q
qingqing01 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


G
George Ni 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
class LetterBoxResize(object):
    def __init__(self, target_size):
        """
        Resize image to target size, convert normalized xywh to pixel xyxy
        format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
        Args:
            target_size (int|list): image target size.
        """
        super(LetterBoxResize, self).__init__()
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
        # letterbox: resize a rectangular image to a padded rectangular
        shape = img.shape[:2]  # [height, width]
        ratio_h = float(height) / shape[0]
        ratio_w = float(width) / shape[1]
        ratio = min(ratio_h, ratio_w)
        new_shape = (round(shape[1] * ratio),
                     round(shape[0] * ratio))  # [width, height]
        padw = (width - new_shape[0]) / 2
        padh = (height - new_shape[1]) / 2
        top, bottom = round(padh - 0.1), round(padh + 0.1)
        left, right = round(padw - 0.1), round(padw + 0.1)

        img = cv2.resize(
            img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT,
            value=color)  # padded rectangular
        return img, ratio, padw, padh

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        height, width = self.target_size
        h, w = im.shape[:2]
        im, ratio, padw, padh = self.letterbox(im, height=height, width=width)

        new_shape = [round(h * ratio), round(w * ratio)]
        im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
        im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
        return im, im_info


F
Feng Ni 已提交
412
class Pad(object):
F
Feng Ni 已提交
413
    def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
F
Feng Ni 已提交
414
        """
F
Feng Ni 已提交
415
        Pad image to a specified size.
F
Feng Ni 已提交
416
        Args:
F
Feng Ni 已提交
417 418
            size (list[int]): image target size
            fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
F
Feng Ni 已提交
419 420 421 422 423 424 425 426 427
        """
        super(Pad, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size
        self.fill_value = fill_value

    def __call__(self, im, im_info):
        im_h, im_w = im.shape[:2]
F
Feng Ni 已提交
428
        h, w = self.size
F
Feng Ni 已提交
429 430 431 432
        if h == im_h and w == im_w:
            im = im.astype(np.float32)
            return im, im_info

F
Feng Ni 已提交
433 434 435 436
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
        im = canvas
F
Feng Ni 已提交
437 438 439
        return im, im_info


W
wangguanzhong 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
class WarpAffine(object):
    """Warp affine the image
    """

    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
                 shift=0.1):
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

Z
zhiboniu 已提交
482
        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
W
wangguanzhong 已提交
483 484 485 486 487 488
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        return inp, im_info


489
def preprocess(im, preprocess_ops):
Q
qingqing01 已提交
490 491 492 493 494 495 496 497 498 499
    # process image by preprocess_ops
    im_info = {
        'scale_factor': np.array(
            [1., 1.], dtype=np.float32),
        'im_shape': None,
    }
    im, im_info = decode_image(im, im_info)
    for operator in preprocess_ops:
        im, im_info = operator(im, im_info)
    return im, im_info