vehicle_plate.py 11.7 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
from functools import reduce

import time
import cv2
import numpy as np
import math
import paddle

import sys
Z
zhiboniu 已提交
27
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
Z
zhiboniu 已提交
28 29
sys.path.insert(0, parent_path)

Z
zhiboniu 已提交
30
from python.infer import get_test_images
Z
zhiboniu 已提交
31
from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32
Z
zhiboniu 已提交
32 33
from pipeline.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes
from pipeline.ppvehicle.vehicleplate_postprocess import build_post_process
34
from pipeline.cfg_utils import merge_cfg, print_arguments, argsparser
Z
zhiboniu 已提交
35 36 37


class PlateDetector(object):
Z
zhiboniu 已提交
38
    def __init__(self, args, cfg):
Z
zhiboniu 已提交
39 40 41
        self.args = args
        self.pre_process_list = {
            'Resize_Mult32': {
Z
zhiboniu 已提交
42 43
                'limit_side_len': cfg['det_limit_side_len'],
                'limit_type': cfg['det_limit_type'],
Z
zhiboniu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            },
            'NormalizeImage': {
                'mean': [0.485, 0.456, 0.406],
                'std': [0.229, 0.224, 0.225],
                'is_scale': True,
            },
            'Permute': {}
        }
        postprocess_params = {}
        postprocess_params['name'] = 'DBPostProcess'
        postprocess_params["thresh"] = 0.3
        postprocess_params["box_thresh"] = 0.6
        postprocess_params["max_candidates"] = 1000
        postprocess_params["unclip_ratio"] = 1.5
        postprocess_params["use_dilation"] = False
        postprocess_params["score_mode"] = "fast"

        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
Z
zhiboniu 已提交
63
            args, cfg, 'det')
Z
zhiboniu 已提交
64

Z
zhiboniu 已提交
65
    def preprocess(self, im_path):
Z
zhiboniu 已提交
66 67 68 69 70 71
        preprocess_ops = []
        for op_type, new_op_info in self.pre_process_list.items():
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_im_lst = []
        input_im_info_lst = []
Z
zhiboniu 已提交
72 73 74 75

        im, im_info = preprocess(im_path, preprocess_ops)
        input_im_lst.append(im)
        input_im_info_lst.append(im_info['im_shape'] / im_info['scale_factor'])
Z
zhiboniu 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        return np.stack(input_im_lst, axis=0), input_im_info_lst

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

Z
zhiboniu 已提交
118
    def predict_image(self, img_list):
Z
zhiboniu 已提交
119 120
        st = time.time()

Z
zhiboniu 已提交
121
        dt_batch_boxes = []
Z
zhiboniu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        for image in img_list:
            img, shape_list = self.preprocess(image)
            if img is None:
                return None, 0
            self.input_tensor.copy_from_cpu(img)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)

            preds = {}
            preds['maps'] = outputs[0]

            #self.predictor.try_shrink_memory()
            post_result = self.postprocess_op(preds, shape_list)
            # print("post_result length:{}".format(len(post_result)))

            org_shape = image.shape
            dt_boxes = post_result[0]['points']
Z
zhiboniu 已提交
142 143
            dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape)
            dt_batch_boxes.append(dt_boxes)
Z
zhiboniu 已提交
144 145

        et = time.time()
Z
zhiboniu 已提交
146
        return dt_batch_boxes, et - st
Z
zhiboniu 已提交
147 148 149


class TextRecognizer(object):
Z
zhiboniu 已提交
150 151 152 153
    def __init__(self, args, cfg, use_gpu=True):
        self.rec_image_shape = cfg['rec_image_shape']
        self.rec_batch_num = cfg['rec_batch_num']
        word_dict_path = cfg['word_dict_path']
Z
zhiboniu 已提交
154
        use_space_char = True
Z
zhiboniu 已提交
155 156 157 158

        postprocess_params = {
            'name': 'CTCLabelDecode',
            "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
159
            "use_space_char": use_space_char
Z
zhiboniu 已提交
160 161 162
        }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
Z
zhiboniu 已提交
163
            create_predictor(args, cfg, 'rec')
Z
zhiboniu 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        self.use_onnx = False

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape

        assert imgC == img.shape[2]
        imgW = int((imgH * max_wh_ratio))
        if self.use_onnx:
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

Z
zhiboniu 已提交
191
    def predict_text(self, img_list):
Z
zhiboniu 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
        batch_num = self.rec_batch_num
        st = time.time()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
Z
zhiboniu 已提交
213 214 215 216
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
Z
zhiboniu 已提交
217 218
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
Z
zhiboniu 已提交
219 220 221 222 223
            if self.use_onnx:
                input_dict = {}
                input_dict[self.input_tensor.name] = norm_img_batch
                outputs = self.predictor.run(self.output_tensors, input_dict)
                preds = outputs[0]
Z
zhiboniu 已提交
224
            else:
Z
zhiboniu 已提交
225 226 227 228 229 230 231 232
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                if len(outputs) != 1:
                    preds = outputs
Z
zhiboniu 已提交
233
                else:
Z
zhiboniu 已提交
234
                    preds = outputs[0]
Z
zhiboniu 已提交
235 236 237 238 239 240 241
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
        return rec_res, time.time() - st


class PlateRecognizer(object):
Z
zhiboniu 已提交
242 243 244 245
    def __init__(self, args, cfg):
        use_gpu = args.device.lower() == "gpu"
        self.platedetector = PlateDetector(args, cfg)
        self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu)
Z
zhiboniu 已提交
246 247 248 249 250

    def get_platelicense(self, image_list):
        plate_text_list = []
        plateboxes, det_time = self.platedetector.predict_image(image_list)
        for idx, boxes_pcar in enumerate(plateboxes):
Z
zhiboniu 已提交
251
            plate_pcar_list = []
Z
zhiboniu 已提交
252 253 254
            for box in boxes_pcar:
                plate_images = get_rotate_crop_image(image_list[idx], box)
                plate_texts = self.textrecognizer.predict_text([plate_images])
Z
zhiboniu 已提交
255 256
                plate_pcar_list.append(plate_texts)
            plate_text_list.append(plate_pcar_list)
Z
zhiboniu 已提交
257 258 259
        return self.check_plate(plate_text_list)

    def check_plate(self, text_list):
Z
zhiboniu 已提交
260 261
        plate_all = {"plate": []}
        for text_pcar in text_list:
Z
zhiboniu 已提交
262
            platelicense = ""
Z
zhiboniu 已提交
263 264
            for text_info in text_pcar:
                text = text_info[0][0][0]
Z
zhiboniu 已提交
265
                if len(text) > 2 and len(text) < 10:
Z
zhiboniu 已提交
266
                    platelicense = self.replace_cn_code(text)
Z
zhiboniu 已提交
267 268
            plate_all["plate"].append(platelicense)
        return plate_all
Z
zhiboniu 已提交
269

Z
zhiboniu 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def replace_cn_code(self, text):
        simcode = {
            '浙': 'ZJ-',
            '粤': 'GD-',
            '京': 'BJ-',
            '津': 'TJ-',
            '冀': 'HE-',
            '晋': 'SX-',
            '蒙': 'NM-',
            '辽': 'LN-',
            '黑': 'HLJ-',
            '沪': 'SH-',
            '吉': 'JL-',
            '苏': 'JS-',
            '皖': 'AH-',
            '赣': 'JX-',
            '鲁': 'SD-',
            '豫': 'HA-',
            '鄂': 'HB-',
            '湘': 'HN-',
            '桂': 'GX-',
            '琼': 'HI-',
            '渝': 'CQ-',
            '川': 'SC-',
            '贵': 'GZ-',
            '云': 'YN-',
            '藏': 'XZ-',
            '陕': 'SN-',
            '甘': 'GS-',
            '青': 'QH-',
            '宁': 'NX-',
            '·': ' '
        }
        for _char in text:
            if _char in simcode:
                text = text.replace(_char, simcode[_char])
        return text

Z
zhiboniu 已提交
308 309

def main():
Z
zhiboniu 已提交
310 311 312 313
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    vehicleplate_cfg = cfg['VEHICLE_PLATE']
    detector = PlateRecognizer(FLAGS, vehicleplate_cfg)
Z
zhiboniu 已提交
314 315 316 317 318
    # predict from image
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    for img in img_list:
        image = cv2.imread(img)
        results = detector.get_platelicense([image])
Z
zhiboniu 已提交
319
        print(results)
Z
zhiboniu 已提交
320 321 322 323 324 325 326 327 328 329 330


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()