engine.h 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
26
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
43
    Weight() = default;
44
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
45 46 47 48
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
49
    nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
50

51 52
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
53 54 55 56
   private:
    nvinfer1::Weights w_;
  };

Y
Yan Chunwei 已提交
57
  TensorRTEngine(int max_batch, int max_workspace,
N
nhzlx 已提交
58
                 cudaStream_t* stream = nullptr, int device = 0,
Y
Yan Chunwei 已提交
59 60 61
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Y
Yan Chunwei 已提交
62
        stream_(stream ? stream : &default_stream_),
N
nhzlx 已提交
63 64 65 66
        logger_(logger),
        device_(device) {
    freshDeviceId();
    cudaStreamCreate(stream_);
67
  }
Y
Yan Chunwei 已提交
68 69 70 71

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
72
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
73

74
  void Execute(int batch_size) override;
Y
Yan Chunwei 已提交
75 76 77 78

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
79
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
94 95
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
96 97
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
98 99 100 101 102

  // GPU memory address for an ITensor with specific name. One can operate on
  // these memory directly for acceleration, for example, output the converted
  // data directly to the buffer to save data copy overhead.
  // NOTE this should be used after calling `FreezeNetwork`.
Y
Yan Chunwei 已提交
103 104 105
  Buffer& buffer(const std::string& name) override;

  cudaStream_t* stream() { return stream_; }
Y
Yan Chunwei 已提交
106 107

  // Fill an input from CPU memory with name and size.
108
  void SetInputFromCPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
109 110
  // TODO(Superjomn) is this method necessary given that buffer(xxx) can be
  // accessed directly. Fill an input from GPU memory with name and size.
111
  void SetInputFromGPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
112
  // Get an output called name, the output of tensorrt is in GPU, so this method
113
  // Return the output's GPU memory address without copy.
Y
Yan Chunwei 已提交
114
  void* GetOutputInGPU(const std::string& name);
115
  // Copy data into dst inside the GPU device.
N
nhzlx 已提交
116
  void GetOutputInGPU(const std::string& name, void* dst, size_t max_size);
Y
Yan Chunwei 已提交
117 118
  // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
  // to CPU.
N
nhzlx 已提交
119
  void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
L
Luo Tao 已提交
120 121 122 123
  // Fill an ITensor into map itensor_map_.
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
124 125 126

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
127 128
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
129
  int GetDevice() { return device_; }
N
nhzlx 已提交
130
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
131
                                    int nbInputs, PluginTensorRT*);
N
nhzlx 已提交
132 133 134 135 136 137 138 139

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
140

141
  // TODO(NHZLX)
N
nhzlx 已提交
142 143 144 145 146 147 148 149 150
  // In the normal case, the paddle-trt exists bug when runing the googlenet.
  // When there are more than two convolutions of 1 * 1 with the same input, the
  // paddle-tensorrt will do the merging optimization, which fuse those conv
  // into
  // one conv, and then trigger bug. So,  We should use strategy to avoid this
  // optimization for the time being. This bug will be fixed in the future.
  std::unordered_map<std::string /*name*/, int /*ITensor_quote_num*/>
      itensor_quote_num;

Y
Yan Chunwei 已提交
151 152 153
 private:
  // the max batch size
  int max_batch_;
154 155
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
156 157
  // the max memory size the engine uses
  int max_workspace_;
158 159 160

  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
Y
Yan Chunwei 已提交
161
  cudaStream_t* stream_;
Y
Yan Chunwei 已提交
162 163
  // If stream_ is not set from outside, hold its own stream.
  cudaStream_t default_stream_;
Y
Yan Chunwei 已提交
164 165
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
166
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
167 168
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
169 170
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
171

N
nhzlx 已提交
172 173
  // The specific GPU id that the TensorRTEngine bounded to.
  int device_;
174
  std::vector<std::unique_ptr<PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
175 176 177 178

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
179 180 181 182 183
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
184 185 186 187 188 189 190
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
191 192 193 194
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
Y
Yan Chunwei 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

211 212 213 214 215
/*
 * Helper to control the TensorRT engine's creation and deletion.
 */
class TRT_EngineManager {
 public:
Y
Yan Chunwei 已提交
216 217 218 219 220 221 222 223 224 225 226
  bool HasEngine(const std::string& name) const {
    return engines_.count(name) != 0;
  }

  // Get an engine called `name`.
  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

  // Create or get an engine called `name`
  TensorRTEngine* Create(int max_batch, int max_workspace, cudaStream_t* stream,
N
nhzlx 已提交
227 228
                         const std::string& name, int gpu_device = 0) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, stream, gpu_device);
Y
Yan Chunwei 已提交
229 230
    engines_[name].reset(p);
    return p;
231 232 233
  }

  void DeleteALl() {
Y
Yan Chunwei 已提交
234 235
    for (auto& item : engines_) {
      item.second.reset(nullptr);
236 237 238 239
    }
  }

 private:
Y
Yan Chunwei 已提交
240
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
241 242
};

Y
Yan Chunwei 已提交
243 244 245
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle