ppyoloe_contrast_head.py 8.1 KB
Newer Older
T
Taojerxi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

20
from ..initializer import bias_init_with_prob, constant_
T
Taojerxi 已提交
21 22
from ..assigners.utils import generate_anchors_for_grid_cell
from ppdet.modeling.heads.ppyoloe_head import PPYOLOEHead
23

T
Taojerxi 已提交
24 25
__all__ = ['PPYOLOEContrastHead']

26

T
Taojerxi 已提交
27 28 29 30
@register
class PPYOLOEContrastHead(PPYOLOEHead):
    __shared__ = [
        'num_classes', 'eval_size', 'trt', 'exclude_nms',
31
        'exclude_post_process', 'use_shared_conv', 'for_distill'
T
Taojerxi 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    ]
    __inject__ = ['static_assigner', 'assigner', 'nms', 'contrast_loss']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 num_classes=80,
                 act='swish',
                 fpn_strides=(32, 16, 8),
                 grid_cell_scale=5.0,
                 grid_cell_offset=0.5,
                 reg_max=16,
                 reg_range=None,
                 static_assigner_epoch=4,
                 use_varifocal_loss=True,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 contrast_loss='SupContrast',
                 nms='MultiClassNMS',
                 eval_size=None,
                 loss_weight={
                     'class': 1.0,
                     'iou': 2.5,
                     'dfl': 0.5,
                 },
                 trt=False,
57
                 attn_conv='convbn',
T
Taojerxi 已提交
58 59
                 exclude_nms=False,
                 exclude_post_process=False,
60 61
                 use_shared_conv=True,
                 for_distill=False):
62 63 64 65
        super().__init__(in_channels, num_classes, act, fpn_strides,
                         grid_cell_scale, grid_cell_offset, reg_max, reg_range,
                         static_assigner_epoch, use_varifocal_loss,
                         static_assigner, assigner, nms, eval_size, loss_weight,
66 67
                         trt, attn_conv, exclude_nms, exclude_post_process,
                         use_shared_conv, for_distill)
68

T
Taojerxi 已提交
69 70 71 72
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self.contrast_loss = contrast_loss
        self.contrast_encoder = nn.LayerList()
        for in_c in self.in_channels:
73
            self.contrast_encoder.append(nn.Conv2D(in_c, 128, 3, padding=1))
T
Taojerxi 已提交
74 75 76 77 78 79 80 81
        self._init_contrast_encoder()

    def _init_contrast_encoder(self):
        bias_en = bias_init_with_prob(0.01)
        for en_ in self.contrast_encoder:
            constant_(en_.weight)
            constant_(en_.bias, bias_en)

82
    def forward_train(self, feats, targets, aux_pred=None):
T
Taojerxi 已提交
83 84 85 86 87 88 89 90 91 92 93 94
        anchors, anchor_points, num_anchors_list, stride_tensor = \
            generate_anchors_for_grid_cell(
                feats, self.fpn_strides, self.grid_cell_scale,
                self.grid_cell_offset)

        cls_score_list, reg_distri_list = [], []
        contrast_encoder_list = []
        for i, feat in enumerate(feats):
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
95 96 97 98
            contrast_logit = self.contrast_encoder[i](self.stem_cls[i](
                feat, avg_feat) + feat)
            contrast_encoder_list.append(
                contrast_logit.flatten(2).transpose([0, 2, 1]))
T
Taojerxi 已提交
99 100 101 102 103 104 105 106 107
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)
        contrast_encoder_list = paddle.concat(contrast_encoder_list, axis=1)

        return self.get_loss([
108 109
            cls_score_list, reg_distri_list, contrast_encoder_list, anchors,
            anchor_points, num_anchors_list, stride_tensor
T
Taojerxi 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
        ], targets)

    def get_loss(self, head_outs, gt_meta):
        pred_scores, pred_distri, pred_contrast_encoder, anchors,\
        anchor_points, num_anchors_list, stride_tensor = head_outs

        anchor_points_s = anchor_points / stride_tensor
        pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)

        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        pad_gt_mask = gt_meta['pad_gt_mask']
        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
F
Feng Ni 已提交
124
            assigned_labels, assigned_bboxes, assigned_scores, _ = \
T
Taojerxi 已提交
125 126 127 128 129 130 131 132 133 134 135
                self.static_assigner(
                    anchors,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes,
                    pred_bboxes=pred_bboxes.detach() * stride_tensor)
            alpha_l = 0.25
        else:
            if self.sm_use:
F
Feng Ni 已提交
136
                assigned_labels, assigned_bboxes, assigned_scores, _ = \
T
Taojerxi 已提交
137 138 139 140 141 142 143 144 145 146
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    stride_tensor,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            else:
F
Feng Ni 已提交
147
                assigned_labels, assigned_bboxes, assigned_scores, _ = \
T
Taojerxi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            alpha_l = -1
        # rescale bbox
        assigned_bboxes /= stride_tensor
        # cls loss
        if self.use_varifocal_loss:
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
            loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
                                            one_hot_label)
        else:
            loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)

        assigned_scores_sum = assigned_scores.sum()
        if paddle.distributed.get_world_size() > 1:
            paddle.distributed.all_reduce(assigned_scores_sum)
            assigned_scores_sum /= paddle.distributed.get_world_size()
        assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
        loss_cls /= assigned_scores_sum

        loss_l1, loss_iou, loss_dfl = \
            self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
                            assigned_labels, assigned_bboxes, assigned_scores,
                            assigned_scores_sum)
        # contrast loss
        loss_contrast = self.contrast_loss(pred_contrast_encoder.reshape([-1, pred_contrast_encoder.shape[-1]]), \
            assigned_labels.reshape([-1]), assigned_scores.max(-1).reshape([-1]))

        loss = self.loss_weight['class'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou + \
               self.loss_weight['dfl'] * loss_dfl + \
               self.loss_weight['contrast'] * loss_contrast

        out_dict = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_iou': loss_iou,
            'loss_dfl': loss_dfl,
            'loss_l1': loss_l1,
            'loss_contrast': loss_contrast
        }
        return out_dict