install_check.py 2.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .framework import Program, program_guard, unique_name, default_startup_program
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
L
lujun 已提交
20
from .dygraph import Layer, nn
J
Jiabin Yang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
from . import executor

from . import core
import numpy as np

__all__ = ['run_check']


class SimpleLayer(Layer):
    def __init__(self, name_scope):
        super(SimpleLayer, self).__init__(name_scope)
        self._fc1 = nn.FC(self.full_name(),
                          3,
                          ParamAttr(initializer=Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = layers.reduce_sum(x)
        return x


def run_check():
    ''' intall check to verify if install is success

    This func should not be called only if you need to verify installation
    '''
    print("Running Verify Fluid Program ... ")
    prog = Program()
    startup_prog = Program()
    scope = core.Scope()
    with executor.scope_guard(scope):
        with program_guard(prog, startup_prog):
            with unique_name.guard():
                np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
                inp = layers.data(
                    name="inp", shape=[2, 2], append_batch_size=False)
                simple_layer = SimpleLayer("simple_layer")
                out = simple_layer(inp)
                param_grads = backward.append_backward(
                    out, parameter_list=[simple_layer._fc1._w.name])[0]
                exe = executor.Executor(core.CPUPlace(
                ) if not core.is_compiled_with_cuda() else core.CUDAPlace(0))
                exe.run(default_startup_program())
                exe.run(feed={inp.name: np_inp},
                        fetch_list=[out.name, param_grads[1].name])

    print(
        "Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
    )