OuterProdLayer.cpp 3.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
Q
qijun 已提交
23 24 25 26 27
 * @brief A layer for computing the outer product of two vectors
 * @note used in NEURAL TURING MACHINE
 * Input1: vector (batchSize * dim1)
 * Input2: vector (batchSize * dim2)
 * Output: a matrix: (batchSize * (dim1*dim2))
Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 */

class OuterProdLayer : public Layer {
protected:
  MatrixPtr tmpMtx0;
  MatrixPtr tmpRow0;
  MatrixPtr tmpRow1;

public:
  explicit OuterProdLayer(const LayerConfig& config) : Layer(config) {}

  ~OuterProdLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(out_prod, OuterProdLayer);

bool OuterProdLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 2U);

  size_t dim0 = inputLayers_[0]->getSize();
  size_t dim1 = inputLayers_[1]->getSize();

  CHECK_EQ(dim0 * dim1, getSize()) << "Dimension mismatch";

60 61 62 63 64 65 66 67
  tmpRow0 = Matrix::create(
      nullptr, /* height= */ 1, dim0, /* trans= */ false, useGpu_);
  tmpRow1 = Matrix::create(
      nullptr, /* height= */ 1, dim1, /* trans= */ false, useGpu_);
  tmpMtx0 = Matrix::create(nullptr,
                           /* height= */ dim0,
                           dim1,
                           /* trans= */ false,
Z
zhangjinchao01 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                           useGpu_);
  return true;
}

void OuterProdLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);

  size_t batchSize = inV0->getHeight();
  size_t dim0 = inV0->getWidth();
  size_t dim1 = inV1->getWidth();

  CHECK_EQ(dim0 * dim1, getSize());
  CHECK_EQ(inV1->getHeight(), batchSize);

  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    reserveOutput(batchSize, dim0 * dim1);
  }

  MatrixPtr outV = getOutputValue();

  {
    REGISTER_TIMER_INFO("FwOutProdTimer", getName().c_str());
    for (size_t i = 0; i < batchSize; i++) {
      tmpMtx0->setData(outV->getData() + i * dim0 * dim1);
      tmpRow0->setData(inV0->getData() + i * dim0);
      tmpRow1->setData(inV1->getData() + i * dim1);

      tmpMtx0->mul(tmpRow0->getTranspose(), tmpRow1);
    }
  }
}

void OuterProdLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr inG0 = getInputGrad(0);
  MatrixPtr inG1 = getInputGrad(1);

  size_t batchSize = inV0->getHeight();
  size_t dim0 = inV0->getWidth();
  size_t dim1 = inV1->getWidth();

  {
    REGISTER_TIMER_INFO("BwOutProdTimer", getName().c_str());

    if (inG0) {
      for (size_t i = 0; i < batchSize; i++) {
        tmpMtx0->setData(outG->getData() + i * dim0 * dim1);
        tmpRow0->setData(inG0->getData() + i * dim0);
        tmpRow1->setData(inV1->getData() + i * dim1);

        tmpRow0->mul(tmpRow1, tmpMtx0->getTranspose(), 1, 1);
      }
    }

    if (inG1) {
      for (size_t i = 0; i < batchSize; i++) {
        tmpMtx0->setData(outG->getData() + i * dim0 * dim1);
        tmpRow0->setData(inV0->getData() + i * dim0);
        tmpRow1->setData(inG1->getData() + i * dim1);

        tmpRow1->mul(tmpRow0, tmpMtx0, 1, 1);
      }
    }
  }
}

}  // namespace paddle