sparsercnn_head.py 12.8 KB
Newer Older
F
FL77N 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
Wenyu 已提交
14 15 16 17 18
"""
This code is based on https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py
Ths copyright of PeizeSun/SparseR-CNN is as follows:
MIT License [see LICENSE for details]
"""
F
FL77N 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import copy
import paddle
import paddle.nn as nn

from ppdet.core.workspace import register
from ppdet.modeling.heads.roi_extractor import RoIAlign
from ppdet.modeling.bbox_utils import delta2bbox
W
Wenyu 已提交
32
from .. import initializer as init
F
FL77N 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

_DEFAULT_SCALE_CLAMP = math.log(100000. / 16)


class DynamicConv(nn.Layer):
    def __init__(
            self,
            head_hidden_dim,
            head_dim_dynamic,
            head_num_dynamic, ):
        super().__init__()

        self.hidden_dim = head_hidden_dim
        self.dim_dynamic = head_dim_dynamic
        self.num_dynamic = head_num_dynamic
        self.num_params = self.hidden_dim * self.dim_dynamic
        self.dynamic_layer = nn.Linear(self.hidden_dim,
                                       self.num_dynamic * self.num_params)

        self.norm1 = nn.LayerNorm(self.dim_dynamic)
        self.norm2 = nn.LayerNorm(self.hidden_dim)

        self.activation = nn.ReLU()

        pooler_resolution = 7
        num_output = self.hidden_dim * pooler_resolution**2
        self.out_layer = nn.Linear(num_output, self.hidden_dim)
        self.norm3 = nn.LayerNorm(self.hidden_dim)

    def forward(self, pro_features, roi_features):
        '''
        pro_features: (1,  N * nr_boxes, self.d_model)
        roi_features: (49, N * nr_boxes, self.d_model)
        '''
        features = roi_features.transpose(perm=[1, 0, 2])
        parameters = self.dynamic_layer(pro_features).transpose(perm=[1, 0, 2])

        param1 = parameters[:, :, :self.num_params].reshape(
            [-1, self.hidden_dim, self.dim_dynamic])
        param2 = parameters[:, :, self.num_params:].reshape(
            [-1, self.dim_dynamic, self.hidden_dim])

        features = paddle.bmm(features, param1)
        features = self.norm1(features)
        features = self.activation(features)

        features = paddle.bmm(features, param2)
        features = self.norm2(features)
        features = self.activation(features)

        features = features.flatten(1)
        features = self.out_layer(features)
        features = self.norm3(features)
        features = self.activation(features)

        return features


class RCNNHead(nn.Layer):
    def __init__(
            self,
            d_model,
            num_classes,
            dim_feedforward,
            nhead,
            dropout,
            head_cls,
            head_reg,
            head_dim_dynamic,
            head_num_dynamic,
            scale_clamp: float=_DEFAULT_SCALE_CLAMP,
            bbox_weights=(2.0, 2.0, 1.0, 1.0), ):
        super().__init__()

        self.d_model = d_model

        # dynamic.
        self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout=dropout)
        self.inst_interact = DynamicConv(d_model, head_dim_dynamic,
                                         head_num_dynamic)

        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = nn.ReLU()

        # cls.
        num_cls = head_cls
        cls_module = list()
        for _ in range(num_cls):
            cls_module.append(nn.Linear(d_model, d_model, bias_attr=False))
            cls_module.append(nn.LayerNorm(d_model))
            cls_module.append(nn.ReLU())
        self.cls_module = nn.LayerList(cls_module)

        # reg.
        num_reg = head_reg
        reg_module = list()
        for _ in range(num_reg):
            reg_module.append(nn.Linear(d_model, d_model, bias_attr=False))
            reg_module.append(nn.LayerNorm(d_model))
            reg_module.append(nn.ReLU())
        self.reg_module = nn.LayerList(reg_module)

        # pred.
        self.class_logits = nn.Linear(d_model, num_classes)
        self.bboxes_delta = nn.Linear(d_model, 4)
        self.scale_clamp = scale_clamp
        self.bbox_weights = bbox_weights

    def forward(self, features, bboxes, pro_features, pooler):
        """
        :param bboxes: (N, nr_boxes, 4)
        :param pro_features: (N, nr_boxes, d_model)
        """

        N, nr_boxes = bboxes.shape[:2]

        proposal_boxes = list()
        for b in range(N):
            proposal_boxes.append(bboxes[b])
        roi_num = paddle.full([N], nr_boxes).astype("int32")

        roi_features = pooler(features, proposal_boxes, roi_num)
        roi_features = roi_features.reshape(
            [N * nr_boxes, self.d_model, -1]).transpose(perm=[2, 0, 1])

        # self_att.
        pro_features = pro_features.reshape([N, nr_boxes, self.d_model])
        pro_features2 = self.self_attn(
            pro_features, pro_features, value=pro_features)
        pro_features = pro_features.transpose(perm=[1, 0, 2]) + self.dropout1(
            pro_features2.transpose(perm=[1, 0, 2]))
        pro_features = self.norm1(pro_features)

        # inst_interact.
        pro_features = pro_features.reshape(
            [nr_boxes, N, self.d_model]).transpose(perm=[1, 0, 2]).reshape(
                [1, N * nr_boxes, self.d_model])
        pro_features2 = self.inst_interact(pro_features, roi_features)
        pro_features = pro_features + self.dropout2(pro_features2)
        obj_features = self.norm2(pro_features)

        # obj_feature.
        obj_features2 = self.linear2(
            self.dropout(self.activation(self.linear1(obj_features))))
        obj_features = obj_features + self.dropout3(obj_features2)
        obj_features = self.norm3(obj_features)

        fc_feature = obj_features.transpose(perm=[1, 0, 2]).reshape(
            [N * nr_boxes, -1])
        cls_feature = fc_feature.clone()
        reg_feature = fc_feature.clone()
        for cls_layer in self.cls_module:
            cls_feature = cls_layer(cls_feature)
        for reg_layer in self.reg_module:
            reg_feature = reg_layer(reg_feature)
        class_logits = self.class_logits(cls_feature)
        bboxes_deltas = self.bboxes_delta(reg_feature)
        pred_bboxes = delta2bbox(bboxes_deltas,
                                 bboxes.reshape([-1, 4]), self.bbox_weights)

        return class_logits.reshape([N, nr_boxes, -1]), pred_bboxes.reshape(
            [N, nr_boxes, -1]), obj_features


@register
class SparseRCNNHead(nn.Layer):
    '''
    SparsercnnHead
    Args:
        roi_input_shape (list[ShapeSpec]): The output shape of fpn
        num_classes (int): Number of classes,
        head_hidden_dim (int): The param of MultiHeadAttention,
        head_dim_feedforward (int): The param of MultiHeadAttention,
        nhead (int): The param of MultiHeadAttention,
        head_dropout (float): The p of dropout,
        head_cls (int): The number of class head,
        head_reg (int): The number of regressionhead,
        head_num_dynamic (int): The number of DynamicConv's param,
        head_num_heads (int): The number of RCNNHead,
        deep_supervision (int): wheather supervise the intermediate results,
        num_proposals (int): the number of proposals boxes and features
    '''
    __inject__ = ['loss_func']
    __shared__ = ['num_classes']

    def __init__(
            self,
            head_hidden_dim,
            head_dim_feedforward,
            nhead,
            head_dropout,
            head_cls,
            head_reg,
            head_dim_dynamic,
            head_num_dynamic,
            head_num_heads,
            deep_supervision,
            num_proposals,
            num_classes=80,
            loss_func="SparseRCNNLoss",
            roi_input_shape=None, ):
        super().__init__()

        # Build RoI.
        box_pooler = self._init_box_pooler(roi_input_shape)
        self.box_pooler = box_pooler

        # Build heads.
        rcnn_head = RCNNHead(
            head_hidden_dim,
            num_classes,
            head_dim_feedforward,
            nhead,
            head_dropout,
            head_cls,
            head_reg,
            head_dim_dynamic,
            head_num_dynamic, )
        self.head_series = nn.LayerList(
            [copy.deepcopy(rcnn_head) for i in range(head_num_heads)])
        self.return_intermediate = deep_supervision

        self.num_classes = num_classes

        # build init proposal
        self.init_proposal_features = nn.Embedding(num_proposals,
                                                   head_hidden_dim)
        self.init_proposal_boxes = nn.Embedding(num_proposals, 4)

        self.lossfunc = loss_func

        # Init parameters.
        init.reset_initialized_parameter(self)
        self._reset_parameters()

    def _reset_parameters(self):
        # init all parameters.
        prior_prob = 0.01
        bias_value = -math.log((1 - prior_prob) / prior_prob)

        for m in self.sublayers():
            if isinstance(m, nn.Linear):
                init.xavier_normal_(m.weight, reverse=True)
            elif not isinstance(m, nn.Embedding) and hasattr(
                    m, "weight") and m.weight.dim() > 1:
                init.xavier_normal_(m.weight, reverse=False)

            if hasattr(m, "bias") and m.bias is not None and m.bias.shape[
                    -1] == self.num_classes:
                init.constant_(m.bias, bias_value)

        init_bboxes = paddle.empty_like(self.init_proposal_boxes.weight)
        init_bboxes[:, :2] = 0.5
        init_bboxes[:, 2:] = 1.0
        self.init_proposal_boxes.weight.set_value(init_bboxes)

    @staticmethod
    def _init_box_pooler(input_shape):

        pooler_resolution = 7
        sampling_ratio = 2

        if input_shape is not None:
            pooler_scales = tuple(1.0 / input_shape[k].stride
                                  for k in range(len(input_shape)))
            in_channels = [
                input_shape[f].channels for f in range(len(input_shape))
            ]
            end_level = len(input_shape) - 1
            # Check all channel counts are equal
            assert len(set(in_channels)) == 1, in_channels
        else:
            pooler_scales = [1.0 / 4.0, 1.0 / 8.0, 1.0 / 16.0, 1.0 / 32.0]
            end_level = 3

        box_pooler = RoIAlign(
            resolution=pooler_resolution,
            spatial_scale=pooler_scales,
            sampling_ratio=sampling_ratio,
            end_level=end_level,
            aligned=True)
        return box_pooler

    def forward(self, features, input_whwh):

        bs = len(features[0])
        bboxes = box_cxcywh_to_xyxy(self.init_proposal_boxes.weight.clone(
        )).unsqueeze(0)
        bboxes = bboxes * input_whwh.unsqueeze(-2)

        init_features = self.init_proposal_features.weight.unsqueeze(0).tile(
            [1, bs, 1])
        proposal_features = init_features.clone()

        inter_class_logits = []
        inter_pred_bboxes = []

        for rcnn_head in self.head_series:
            class_logits, pred_bboxes, proposal_features = rcnn_head(
                features, bboxes, proposal_features, self.box_pooler)

            if self.return_intermediate:
                inter_class_logits.append(class_logits)
                inter_pred_bboxes.append(pred_bboxes)
            bboxes = pred_bboxes.detach()

        output = {
            'pred_logits': inter_class_logits[-1],
            'pred_boxes': inter_pred_bboxes[-1]
        }
        if self.return_intermediate:
            output['aux_outputs'] = [{
                'pred_logits': a,
                'pred_boxes': b
            } for a, b in zip(inter_class_logits[:-1], inter_pred_bboxes[:-1])]

        return output

    def get_loss(self, outputs, targets):
        losses = self.lossfunc(outputs, targets)
        weight_dict = self.lossfunc.weight_dict

        for k in losses.keys():
            if k in weight_dict:
                losses[k] *= weight_dict[k]

        return losses


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(-1)
W
Wenyu 已提交
374 375
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return paddle.stack(b, axis=-1)