lod_tensor.cc 8.7 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/framework/lod_tensor.h"
武毅 已提交
16 17
#include "paddle/framework/data_type.h"
#include "paddle/framework/framework.pb.h"
18 19 20 21 22 23 24 25

#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29 30 31

#include <glog/logging.h>

namespace paddle {
namespace framework {

武毅 已提交
32
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
33
  os << "{";
武毅 已提交
34
  for (auto &v : lod) {
35
    os << "{";
武毅 已提交
36
    for (auto &i : v) {
37 38 39 40 41 42 43 44 45
      os << i << ",";
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(platform::is_cpu_place(t.place()));
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

武毅 已提交
62
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
63
                 size_t elem_end) {
64 65 66 67 68 69 70 71 72
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
73 74 75
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
76 77
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
78
  }
79 80 81 82
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
83
    for (auto &ele : res[lvl]) {
84 85 86 87 88 89
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
90
LoD ToAbsOffset(const LoD &in) {
91 92 93 94
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
  for (int level = result.size() - 2; level >= 0; level--) {
武毅 已提交
95
    for (auto &ele : result[level]) {
96 97 98 99
      ele = result[level + 1][ele];
    }
  }
  return result;
100 101
}

武毅 已提交
102
bool operator==(const LoD &a, const LoD &b) {
103 104 105 106 107
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
108 109
    const auto &a_level = a[i];
    const auto &b_level = b[i];
110 111 112 113 114 115 116 117 118 119
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
120 121
}

122
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
123
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
124 125 126 127 128 129
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
130 131 132 133
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
134
    sub_lod.emplace_back(level_lens);
135 136 137
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
138 139

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
140 141
}

武毅 已提交
142
void AppendLoD(LoD *lod, const LoD &lod_length) {
143 144
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
145
      "The lod_length should has the same size with the appended lod.");
146
  if (lod->empty()) {
Y
Yang Yu 已提交
147 148 149
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
150 151
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
152
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
153
    auto &level = (*lod)[i];
154 155 156 157 158 159
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
160 161
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
162
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
163 164 165
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
166 167 168 169 170 171
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
172 173 174 175 176 177 178 179 180 181 182
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
183 184
  // the 3st field, Tensor
  SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
185 186
}

Y
Yancey 已提交
187 188
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
189
  {
Y
Yancey 已提交
190
    // the 1st field, unit32_t version for LoDTensor
191 192 193
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
194
  }
195 196
  {
    // the 2st field, LoD information
武毅 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
210
  // the 3st filed, Tensor
Y
Yancey 已提交
211
  DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
212 213
}

Y
Yang Yang 已提交
214 215 216 217 218 219 220 221 222 223
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
  //  PADDLE_ENFORCE(lod().empty() || (lod().size() == 1 && lod()[0].empty())
  //                 , "Disable parallel lod for now");
  PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
  PADDLE_ENFORCE(dims()[0] % places.size() == 0,
                 "Batch size should be divided by places size");

  std::vector<LoDTensor> lods;
Y
Yang Yu 已提交
224 225 226 227
  for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
    size_t begin = place_idx * dims()[0] / places.size();
    size_t end = (place_idx + 1) * dims()[0] / places.size();
    auto src = Slice(static_cast<int>(begin), static_cast<int>(end));
Y
Yang Yang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    LoDTensor dst;
    dst.Resize(src.dims());
    auto &dst_place = places[place_idx];
    auto dst_ptr = dst.mutable_data(dst_place, src.type());

    // TODO(tonyyang-svail):
    //   change the following to framework::CopyFrom
    auto src_place = src.place();
    auto src_ptr = src.data<void>();
    auto size = src.numel() * SizeOfType(src.type());
    if (platform::is_cpu_place(src_place) &&
        platform::is_cpu_place(dst_place)) {
      memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                   boost::get<platform::CPUPlace>(src_place), src_ptr, size);
    } else {
      PADDLE_THROW("Not Implemented");
    }

    lods.emplace_back(dst);
  }

  return lods;
}

Y
Yang Yang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
void LoDTensor::MergeLoDTensor(
    const std::vector<const LoDTensor *> &lod_tensors, platform::Place place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place));
  PADDLE_ENFORCE(!lod_tensors.empty());

  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
  for (auto *lod : lod_tensors) {
    PADDLE_ENFORCE(new_dim == lod->dims());
    PADDLE_ENFORCE(new_type == lod->type());
    PADDLE_ENFORCE(platform::is_cpu_place(lod->place()));
  }
  new_dim[0] *= lod_tensors.size();
  Resize(new_dim);

  auto *dst_ptr = reinterpret_cast<uint8_t *>(mutable_data(place, new_type));
  for (auto *src : lod_tensors) {
    auto size = src->numel() * SizeOfType(src->type());
    memory::Copy(boost::get<platform::CPUPlace>(place), dst_ptr,
                 boost::get<platform::CPUPlace>(src->place()),
                 src->data<void>(), size);
    dst_ptr += size;
  }
}

278 279
}  // namespace framework
}  // namespace paddle