ngraph_operator.cc 19.0 KB
Newer Older
B
baojun-nervana 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_NGRAPH
#include <glog/logging.h>

#include <algorithm>
#include <map>

#include "paddle/fluid/framework/feed_fetch_type.h"
B
baojun-nervana 已提交
22 23 24
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
B
baojun-nervana 已提交
25
#include "paddle/fluid/framework/ngraph_operator.h"
B
baojun-nervana 已提交
26
#include "paddle/fluid/framework/tensor.h"
B
baojun-nervana 已提交
27 28 29
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"

B
baojun-nervana 已提交
30 31
#include "ngraph/ngraph.hpp"

B
baojun-nervana 已提交
32 33 34
namespace paddle {
namespace framework {

B
baojun-nervana 已提交
35 36 37 38 39 40 41 42 43 44
static ngraph::Shape Ddim2Shape(const DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
    sp.push_back(k);
  }
  return sp;
}

B
baojun-nervana 已提交
45 46 47 48 49 50 51 52
static std::map<proto::VarType::Type, ngraph::element::Type> pd2ng_type_map = {
    {proto::VarType::FP32, ngraph::element::f32},
    {proto::VarType::FP64, ngraph::element::f64},
    {proto::VarType::INT32, ngraph::element::i32},
    {proto::VarType::INT64, ngraph::element::i64},
    {proto::VarType::BOOL, ngraph::element::boolean},
};

B
baojun-nervana 已提交
53 54 55 56 57 58 59
typedef enum {                /* nGraph support state on ops          */
               FULL_TRAIN,    /* Support full ops for train           */
               PARTIAL_TRAIN, /* Support partial ops for train        */
               FULL_TEST,     /* Support full list of ops for test    */
               PARTIAL_TEST   /* Support partial list of ops for test */
} op_state;

B
baojun-nervana 已提交
60 61 62 63 64 65 66 67 68
class NgraphOperator {
 public:
  explicit NgraphOperator(const Scope& scope, const platform::Place& place,
                          const std::vector<std::shared_ptr<OperatorBase>>& ops,
                          const std::unordered_map<
                              std::string, ngraph::element::Type>& var_type_map,
                          const std::unordered_set<std::string>& persist,
                          const std::unordered_set<std::string>& fetches,
                          const std::unordered_set<std::string>& post_op_inputs,
B
baojun-nervana 已提交
69 70 71 72 73 74 75 76
                          op_state ng_op_state)
      : scope_(scope),
        place_(place),
        fused_ops_(ops),
        var_type_map_(var_type_map),
        persistables_(persist),
        fetches_(fetches),
        post_op_inputs_(post_op_inputs),
B
baojun-nervana 已提交
77 78 79 80 81 82 83 84 85 86 87
        ng_op_state_(ng_op_state) {
    var_in_node_map_ = std::make_shared<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

    var_node_map_ = std::make_shared<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

    BuildNgIO();

    GetNgFunction();
  }
B
baojun-nervana 已提交
88 89 90 91 92

  void Run(const Scope& scope, const platform::Place& place) const;

 private:
  static std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
B
baojun-nervana 已提交
93
      func_cache_;
B
baojun-nervana 已提交
94 95 96 97 98 99 100 101
  const Scope& scope_;
  const platform::Place& place_;
  std::vector<std::shared_ptr<OperatorBase>> fused_ops_;
  std::unordered_map<std::string, ngraph::element::Type> var_type_map_;
  std::unordered_set<std::string> persistables_;
  std::unordered_set<std::string> fetches_;
  std::unordered_set<std::string> post_op_inputs_;
  op_state ng_op_state_;
B
baojun-nervana 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

  static std::shared_ptr<ngraph::runtime::Backend> backend_;

  std::shared_ptr<ngraph::Function> ngraph_function_;
  // var_name of inputs
  std::vector<std::string> var_in_;
  // var_name of outputs from  fetch in order
  std::vector<std::string> var_out_;

  std::shared_ptr<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
      var_in_node_map_;

  // map each var name with a ngraph node
  std::shared_ptr<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
      var_node_map_;

  std::shared_ptr<std::string> GetCacheKey();

  void GetNgInputShape(std::shared_ptr<OperatorBase> op);

  void BuildNgNode();

  void BuildNgIO();

  void BuildNgFunction();

  void GetNgFunction();
B
baojun-nervana 已提交
131 132 133 134 135 136 137 138 139 140 141 142
};

std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
FusedOperator::FusedOpIntervals(
    std::vector<std::unique_ptr<paddle::framework::OperatorBase>>* ops) {
  std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
      intervals;
  if (ops->empty()) {
    return intervals;
  }
  size_t size = ops->size();
  size_t left = 0;
B
baojun-nervana 已提交
143
  while (left < size && ops->at(left)->Type() != kFeedOpType) {
B
baojun-nervana 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    ++left;
  }
  if (left == size) {
    return intervals;
  }
  while (left < size && ops->at(left)->Type() == kFeedOpType) {
    ++left;
  }

  size_t right = left;
  while (right < size && ops->at(right)->Type() != kFetchOpType) {
    ++right;
  }
  if (right == size) {
    return intervals;
  }
  if (left >= right) return intervals;

  // (left, right - 1) represents indices between feed and fetch
  size_t pivot = left;
  while (pivot < right) {
    auto op_type = ops->at(pivot)->Type();
    if (paddle::framework::NgraphBridge::NG_NODE_MAP.find(op_type) ==
        paddle::framework::NgraphBridge::NG_NODE_MAP.end()) {
      ++pivot;
    } else {
      size_t start = pivot, end = start;
      while (pivot < right &&
             (paddle::framework::NgraphBridge::NG_NODE_MAP.find(
B
baojun-nervana 已提交
173
                  ops->at(pivot)->Type()) !=
B
baojun-nervana 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
              paddle::framework::NgraphBridge::NG_NODE_MAP.end())) {
        ++pivot;
        ++end;
      }
      std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>
          interval = {ops->begin() + start, ops->begin() + end};
      intervals.push_back(interval);
    }
  }  // end while

  return intervals;
}

FusedOperator::FusedOperator(
    const ProgramDesc& prog, size_t block_id,
    std::vector<std::unique_ptr<OperatorBase>>::iterator start,
    std::vector<std::unique_ptr<OperatorBase>>::iterator end,
B
baojun-nervana 已提交
191 192
    const std::string& type, const VariableNameMap& inputs,
    const VariableNameMap& outputs, const AttributeMap& attrs)
B
baojun-nervana 已提交
193 194 195
    : OperatorBase(type, inputs, outputs, attrs),
      pdesc_(prog),
      block_(block_id) {
B
baojun-nervana 已提交
196 197
  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = start;
       it != end; ++it) {
B
baojun-nervana 已提交
198
    fused_ops_.push_back(std::move(*it));
B
baojun-nervana 已提交
199 200 201 202 203 204
  }

  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = end;
       (*it)->Type() != kFetchOpType; ++it) {
    for (auto& var_name_item : (*it)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
B
baojun-nervana 已提交
205
        post_op_inputs_.insert(var_name);
B
baojun-nervana 已提交
206 207 208 209 210
      }
    }
  }

  if ((*(start - 1))->Type() == kFeedOpType && (*end)->Type() == kFetchOpType) {
B
baojun-nervana 已提交
211
    is_full_ = true;
B
baojun-nervana 已提交
212 213
  }

B
baojun-nervana 已提交
214
  Process();
B
baojun-nervana 已提交
215 216
}

B
baojun-nervana 已提交
217 218
void FusedOperator::Process() {
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  for (auto& var : bdesc.AllVars()) {
    if (!(var->GetType() == proto::VarType::SELECTED_ROWS ||
          var->GetType() == proto::VarType::LOD_TENSOR ||
          var->GetType() == proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != "fetch" && var_name != "feed") {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
B
baojun-nervana 已提交
237
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
B
baojun-nervana 已提交
238 239 240
    }

    if (var->Persistable()) {
B
baojun-nervana 已提交
241
      persistables_.insert(var->Name());
B
baojun-nervana 已提交
242 243 244 245 246 247
    }
  }

  for (auto* op : bdesc.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
B
baojun-nervana 已提交
248
      fetches_.insert(fetch_target_name);
B
baojun-nervana 已提交
249 250 251 252 253 254
    }
  }
}

void FusedOperator::RunImpl(const Scope& scope,
                            const platform::Place& place) const {
B
baojun-nervana 已提交
255 256
  op_state ng_op_state = PARTIAL_TEST;
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
257 258
  for (auto* op : bdesc.AllOps()) {
    if (op->Type().find("_grad") != std::string::npos) {
B
baojun-nervana 已提交
259
      ng_op_state = PARTIAL_TRAIN;
B
baojun-nervana 已提交
260 261 262 263
      break;
    }
  }

B
baojun-nervana 已提交
264
  if (is_full_) {
B
baojun-nervana 已提交
265
    ng_op_state = ng_op_state == PARTIAL_TEST ? FULL_TEST : FULL_TRAIN;
B
baojun-nervana 已提交
266 267
  }

B
baojun-nervana 已提交
268 269 270
  NgraphOperator ngraph_op(scope, place, fused_ops_, var_type_map_,
                           persistables_, fetches_, post_op_inputs_,
                           ng_op_state);
B
baojun-nervana 已提交
271 272 273
  ngraph_op.Run(scope, place);
}

B
baojun-nervana 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
    NgraphOperator::func_cache_ = {};

std::shared_ptr<ngraph::runtime::Backend> NgraphOperator::backend_ =
    ngraph::runtime::Backend::create("CPU");

void NgraphOperator::GetNgInputShape(std::shared_ptr<OperatorBase> op) {
  RuntimeInferShapeContext infer_shape_ctx(*op, scope_);
  std::shared_ptr<OperatorWithKernel> op_k =
      std::dynamic_pointer_cast<OperatorWithKernel>(op);
  op_k->InferShape(&infer_shape_ctx);

  for (auto& var_name_item : op->Inputs()) {
    std::vector<ngraph::Shape> vshape;
    auto& var_prm_name = var_name_item.first;
    auto var_name_size = var_name_item.second.size();
    if (var_name_size == 1) {
      auto dim = infer_shape_ctx.GetInputDim(var_prm_name);
      vshape.push_back(Ddim2Shape(dim));
    } else if (var_name_item.second.size() > 1) {
      auto vdim = infer_shape_ctx.GetInputsDim(var_prm_name);
      PADDLE_ENFORCE_EQ(vdim.size(), var_name_item.second.size(),
                        "Need dim info for each var");
      for (auto& dim : vdim) {
        vshape.push_back(Ddim2Shape(dim));
      }
    } else {
      // 0 size : conv2d Bias
    }

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var_name = var_name_item.second.at(i);
      if (std::find(var_in_.begin(), var_in_.end(), var_name) !=
          var_in_.end()) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto ng_type = var_type_map_.at(var_name);
          auto prm = std::make_shared<ngraph::op::Parameter>(
              ng_type, vshape.at(i), true);
          (*var_node_map_)[var_name] = prm;
          (*var_in_node_map_)[var_name] = prm;
        }
      }
    }
  }
}

void NgraphOperator::BuildNgNode() {
  for (auto& var_name : var_out_) {
    if (var_node_map_->find(var_name) == var_node_map_->end()) {
      auto* var = scope_.FindVar(var_name);
      if (var && VarIsTensor(*var)) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto& ddim = tensor_pd->dims();
        auto ng_shape = Ddim2Shape(ddim);
        auto ng_type = var_type_map_.at(var_name);
        auto prm =
            std::make_shared<ngraph::op::Parameter>(ng_type, ng_shape, true);
        (*var_node_map_)[var_name] = prm;
      }
    }
  }

  paddle::framework::NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgGraph(op);
  }
}

void NgraphOperator::BuildNgIO() {
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;

  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
                var_in_.end()) {
          // fill var_in here to keep lhs and rhs order
          var_in_.push_back(var_name);
        }
      }
    }

    if (op->Type() != "fill_constant") {
      GetNgInputShape(op);
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        switch (ng_op_state_) {
          case PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                fetches_.find(var_name) != fetches_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case FULL_TEST:
            if (fetches_.find(var_name) != fetches_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case PARTIAL_TRAIN:
            if (fetches_.find(var_name) != fetches_.end() ||
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case FULL_TRAIN:
            if (fetches_.find(var_name) != fetches_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          default:
            var_out_.push_back(var_name);
        }
      }
    }
  }
}

void NgraphOperator::BuildNgFunction() {
  BuildNgNode();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::op::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
    func_outputs.push_back(var_node_map_->at(vo));
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
    func_inputs.push_back(prm);
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

std::shared_ptr<std::string> NgraphOperator::GetCacheKey() {
  auto cache_key = std::make_shared<std::string>("");
  *cache_key += std::to_string(fused_ops_.size());
  for (auto& op : fused_ops_) {
    *cache_key += op->Type();
  }
  for (auto& var_name : var_in_) {
    auto shape = var_node_map_->at(var_name)->get_shape();
    *cache_key += var_name;
    *cache_key += var_type_map_.at(var_name).c_type_string();
    for (size_t i = 0; i < shape.size(); ++i) {
      *cache_key += std::to_string(shape.at(i));
    }
  }

  for (auto& var_name : var_out_) {
    auto* var = scope_.FindVar(var_name);
    if (var && VarIsTensor(*var)) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto& ddim = tensor_pd->dims();
      for (int i = 0; i < ddim.size(); ++i) {
        *cache_key += std::to_string(ddim[i]);
      }
    }
  }
  return cache_key;
}

void NgraphOperator::GetNgFunction() {
  bool cache_on = true;
  if (cache_on) {
    std::string cache_key_val = *GetCacheKey();
    if (func_cache_.find(cache_key_val) != func_cache_.end()) {
      ngraph_function_ = func_cache_.at(cache_key_val);
    } else {
      BuildNgFunction();
      func_cache_[cache_key_val] = ngraph_function_;
    }
  } else {
    BuildNgFunction();
  }
}

void NgraphOperator::Run(const Scope& scope,
                         const platform::Place& place) const {
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out;

  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto vi = var_in_.at(i);
    auto sp = var_node_map_->at(vi)->get_shape();
    std::shared_ptr<ngraph::runtime::Tensor> ti;
    auto* var = scope.FindVar(vi);
    if (var && VarIsTensor(*var)) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                     "Ensure ngraph tensor layout align with paddle tensor");
      if (tensor_pd->type().hash_code() ==
          typeid(float).hash_code()) {  // NOLINT
        const float* arr = tensor_pd->data<float>();
        ti = backend_->create_tensor(ngraph::element::f32, sp,
                                     const_cast<float*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(int).hash_code()) {  // NOLINT
        const int* arr = tensor_pd->data<int>();
        ti = backend_->create_tensor(ngraph::element::i32, sp,
                                     const_cast<int*>(arr));
      } else if (tensor_pd->type().hash_code() == typeid(int64_t).hash_code()) {
        const int64_t* arr = tensor_pd->data<int64_t>();
        ti = backend_->create_tensor(ngraph::element::i64, sp,
                                     const_cast<int64_t*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(double).hash_code()) {  // NOLINT
        const double* arr = tensor_pd->data<double>();
        ti = backend_->create_tensor(ngraph::element::f64, sp,
                                     const_cast<double*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(bool).hash_code()) {  // NOLINT
        const bool* arr = tensor_pd->data<bool>();
        ti = backend_->create_tensor(ngraph::element::boolean, sp,
                                     const_cast<bool*>(arr));
      } else {
        PADDLE_THROW("Data type not handling for var %s", vi);
      }
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
    }
    bool is_test = (ng_op_state_ == PARTIAL_TEST || ng_op_state_ == FULL_TEST)
                       ? true
                       : false;
    bool is_persistable =
        (persistables_.find(vi) != persistables_.end()) ? true : false;
    if (is_test && is_persistable) {
      ti->set_stale(false);
    }
    t_in.push_back(ti);
  }

  for (size_t i = 0; i < var_out_.size(); ++i) {
    auto var_name = var_out_[i];
    auto* var = scope.FindVar(var_name);
    std::shared_ptr<ngraph::runtime::Tensor> to;
    if (var && VarIsTensor(*var)) {
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
      auto dd = tensor_pd->dims();
      ngraph::Shape sp = Ddim2Shape(dd);
      auto ng_type = var_type_map_.at(var_name);
      if (ng_type == ngraph::element::f32) {
        auto pd_arr = tensor_pd->mutable_data<float>(place);
        to = backend_->create_tensor(ngraph::element::f32, sp, pd_arr);
      } else if (ng_type == ngraph::element::i64) {
        auto pd_arr = tensor_pd->mutable_data<int64_t>(place);
        to = backend_->create_tensor(ngraph::element::i64, sp, pd_arr);
      } else if (ng_type == ngraph::element::f64) {
        auto pd_arr = tensor_pd->mutable_data<double>(place);
        to = backend_->create_tensor(ngraph::element::f64, sp, pd_arr);
      } else if (ng_type == ngraph::element::boolean) {
        auto pd_arr = tensor_pd->mutable_data<bool>(place);
        to = backend_->create_tensor(ngraph::element::boolean, sp, pd_arr);
      } else {
        PADDLE_THROW("Data type not handled in for var %s", var_name);
      }
      t_out.push_back(to);
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", var_name);
    }
  }

  backend_->call(ngraph_function_, t_out, t_in);
}  // NgraphOperator::RunImpl
B
baojun-nervana 已提交
565 566 567
}  // namespace framework
}  // namespace paddle
#endif