reshape_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/reshape_op.h"
Y
Yibing Liu 已提交
16

Y
Yi Wang 已提交
17 18 19
#include <string>
#include <vector>

Y
Yibing Liu 已提交
20 21 22 23 24
namespace paddle {
namespace operators {

class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
25
  void Make() override {
26 27 28 29 30 31 32 33
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
34
    AddAttr<std::vector<int>>(
C
caoying03 已提交
35
        "shape", "(std::vector<int>) Target shape of reshape operator.");
Y
Yan Chunwei 已提交
36
    AddAttr<bool>("inplace",
C
caoying03 已提交
37 38 39 40 41
                  "(default: false) Change the source tensor's shape without "
                  "memory copy. When Attr(inplace) is set true, the output "
                  "tensor shares memory with Input(X), otherwise, a new output "
                  "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
K
kexinzhao 已提交
42 43
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
44

45 46
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
47

C
caoying03 已提交
48
Examples:
Y
Yibing Liu 已提交
49

C
caoying03 已提交
50 51 52 53
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

54
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
55 56 57 58 59 60
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

61
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
62 63 64 65
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
66

C
caoying03 已提交
67
Note:
Y
Yibing Liu 已提交
68

C
caoying03 已提交
69 70 71
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
72 73

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
74
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
75
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
76
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
77 78

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
79 80
Attr(shape) still should be set correctly to gurantee shape inference in 
compile-time.
Y
Yibing Liu 已提交
81

Y
Yibing Liu 已提交
82 83 84 85 86 87 88 89 90 91 92 93
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

94
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
95 96 97 98
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
99
  }
100 101 102 103 104 105 106 107

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
Y
Yibing Liu 已提交
108 109
};

Y
yuyang18 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
void ReshapeKernel::Compute(const framework::ExecutionContext &ctx) const {
  auto *out = ctx.Output<framework::LoDTensor>("Out");
  auto *in = ctx.Input<framework::LoDTensor>("X");

  auto *shape_tensor = ctx.HasInput("Shape")
                           ? ctx.Input<framework::LoDTensor>("Shape")
                           : nullptr;

  framework::DDim out_dims = out->dims();

  if (shape_tensor) {
    auto *shape_data = shape_tensor->data<int>();
    framework::Tensor cpu_shape_tensor;
    if (platform::is_gpu_place(ctx.GetPlace())) {
      TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
      shape_data = cpu_shape_tensor.data<int>();
    }
    auto shape =
        std::vector<int>(shape_data, shape_data + shape_tensor->numel());
    out_dims = ReshapeOp::ValidateShape(shape, in->dims());
  }
  if (!in->lod().empty()) {
    PADDLE_ENFORCE_EQ(out_dims[0], in->dims()[0],
                      "Reshape operator cannot reshape an input sequence batch "
                      "into an output sequence batch that has a different "
                      "number of time steps. Please consider using "
                      "sequence_reshape op.");
  }

  bool inplace = ctx.Attr<bool>("inplace");
  out->Resize(out_dims);
  if (!inplace) {
    out->mutable_data(ctx.GetPlace(), in->type());
    framework::TensorCopySync(*in, ctx.GetPlace(), out);
    out->Resize(out_dims);
  } else {
    out->ShareDataWith(*in);
    out->Resize(out_dims);
  }
}
void ReshapeGradKernelBase::Compute(
    const framework::ExecutionContext &ctx) const {
  auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
  auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

  d_x->mutable_data(ctx.GetPlace(), d_out->type());
  bool inplace = ctx.Attr<bool>("inplace");

  auto in_dims = d_x->dims();
  if (!inplace) {
    framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
    ctx.device_context().Wait();
    d_x->Resize(in_dims);
  } else {
    d_x->ShareDataWith(*d_out);
    d_x->Resize(in_dims);
  }
}
Y
Yibing Liu 已提交
168 169 170 171
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
172
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
173 174
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp);
Y
yuyang18 已提交
175 176 177 178 179 180 181
REGISTER_OP_CPU_KERNEL_EX(reshape, float, ops::ReshapeKernel, double,
                          ops::ReshapeKernel, int, ops::ReshapeKernel, int64_t,
                          ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<float>,
                       ops::ReshapeGradKernel<double>,
                       ops::ReshapeGradKernel<int>,
                       ops::ReshapeGradKernel<int64_t>);