layers.py 188.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
Q
qijun 已提交
57
    'classification_cost',
58
    'LayerOutput',
Q
qijun 已提交
59 60 61 62 63 64
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78 79 80 81 82 83 84 85 86
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
87
    'gru_step_naive_layer',
Q
qijun 已提交
88 89 90 91 92 93 94 95 96 97 98 99
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
100
    'warp_ctc_layer',
Q
qijun 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
114
    'printer_layer',
Q
qijun 已提交
115
    'print_layer',
Y
yuan 已提交
116
    'priorbox_layer',
117
    'cross_channel_norm_layer',
118 119
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
120
    'spp_layer',
D
dangqingqing 已提交
121
    'pad_layer',
L
Luo Tao 已提交
122
    'eos_layer',
123
    'smooth_l1_cost',
124
    'layer_support',
W
wwhu 已提交
125
    'multiplex_layer',
D
dangqingqing 已提交
126
    'row_conv_layer',
127
    'dropout_layer',
128
    'prelu_layer',
129
    'switch_order_layer',
Q
qijun 已提交
130
]
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137


class LayerType(object):
    """
    Layer type enumerations.
    """

138 139 140 141 142 143 144 145
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
146
    POOLING_AVG = 'average'
147
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
148
    COST = 'cost'
149 150
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
151
    HSIGMOID = 'hsigmoid'
152 153 154 155 156 157
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
158 159 160 161 162 163 164
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
165
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
166 167 168 169 170 171 172

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
173
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
174 175 176
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
177
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
178
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
179
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
180 181 182 183 184 185 186 187 188 189 190

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
191
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
192
    BLOCK_EXPAND = "blockexpand"
193
    MAXOUT = "maxout"
Q
qijun 已提交
194
    SPP_LAYER = "spp"
D
dangqingqing 已提交
195
    PAD_LAYER = "pad"
W
wwhu 已提交
196
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
197
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
198 199 200

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
201 202
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
203 204 205 206 207

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
208
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
209

210 211 212 213 214 215 216 217 218 219 220
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
221
    SWITCH_ORDER_LAYER = 'switch_order'
Z
zhangjinchao01 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
243
    """
L
Luo Tao 已提交
244
    PaddlePaddle supports three sequence types:
245 246 247

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
248 249
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
250

L
Luo Tao 已提交
251
    Accordingly, AggregateLevel supports two modes:
252

L
Luo Tao 已提交
253
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
254
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
255 256
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
257
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
258 259 260
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
261 262
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
263 264 265
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
288
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
289 290
    """

Q
qijun 已提交
291 292 293 294 295 296 297 298 299
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
300
                 reverse=None):
Z
zhangjinchao01 已提交
301 302
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
303
        assert size is not None
Z
zhangjinchao01 已提交
304 305
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
306
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
307
        self.layer_type = layer_type
308 309
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
318
        self.reverse = reverse
Z
zhangjinchao01 已提交
319

320 321 322 323 324 325 326 327
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
328 329 330

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
331
DEVICE = 'device'
Z
zhangjinchao01 已提交
332 333 334


def layer_support(*attrs):
335
    attrs_list = list(attrs)
336
    attrs_list.append(DEVICE)
Q
qijun 已提交
337

Z
zhangjinchao01 已提交
338 339 340
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
341
            for attr in attrs_list:
Z
zhangjinchao01 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
358 359 360 361 362
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
402 403
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
404 405 406 407
    proj.origin = input
    return proj


408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
438 439
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
440 441 442 443
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
483 484
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
485 486 487 488
    proj.origin = input
    return proj


489
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
520
    :type input: LayerOutput
Z
zhangjinchao01 已提交
521 522
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
523
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
524 525 526 527 528 529
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
530 531
        if size is None:
            size = input.size - offset
Q
qijun 已提交
532
        proj = IdentityOffsetProjection(
533
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
534 535 536 537
        proj.origin = input
    return proj


X
xuwei06 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
560
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
561 562 563 564
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
565
@wrap_param_attr_default()
566
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
567
    """
568
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

582 583 584 585 586 587 588
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
589 590
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
591
    proj.origin = input
592
    return proj
Z
zhangjinchao01 已提交
593

594 595

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
596 597
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
598

Z
zhangjinchao01 已提交
599
    .. math::
L
Luo Tao 已提交
600
       out.row[i] += scale * (a.row[i] .* b.row[i])
601

Z
zhangjinchao01 已提交
602 603
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
604

Z
zhangjinchao01 已提交
605
    The example usage is:
606

Z
zhangjinchao01 已提交
607
    .. code-block:: python
608

L
Luo Tao 已提交
609
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
610

611 612 613 614
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
615 616
    :param scale: config scalar, default value is one.
    :type scale: float
617 618
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
619
    """
620 621 622
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
623
    a = kwargs.get('x', a)  # For Backward capacity.
624 625 626 627 628 629
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
630
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
631
    op.origin = [a, b]
632
    return op
Z
zhangjinchao01 已提交
633

634

Z
zhangjinchao01 已提交
635
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
636 637 638
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
675 676 677 678 679 680
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
694
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
711 712 713 714 715 716 717
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
718 719 720 721 722
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

723
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
724 725 726 727 728 729 730 731
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
732
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
733
            self.inputs.append(other)
734 735 736 737
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
738 739 740 741 742 743 744 745
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

746
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
747 748
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
749
        assert len(self.inputs) != 0
750
        ml = MixedLayer(
Z
zhangjinchao01 已提交
751 752 753 754 755
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
756
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
757 758 759
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
760
        self.finalized = True
Z
zhangjinchao01 已提交
761 762 763 764 765 766


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
767 768 769 770 771
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
816 817 818 819 820 821
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
822
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
823 824 825 826 827 828 829 830
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
831
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
832 833 834 835 836 837 838
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
839
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
840 841 842 843 844

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
845
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
846
    :type height: int|None
L
Luo Tao 已提交
847
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
848
    :type width: int|None
Z
zhangjinchao01 已提交
849 850
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
851
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
852 853
    :rtype: LayerOutput
    """
Q
qijun 已提交
854 855 856 857
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
858 859
        height=height,
        width=width,
Q
qijun 已提交
860
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
883
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
884 885
    :rtype: LayerOutput
    """
Q
qijun 已提交
886 887 888 889 890 891
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
892 893 894 895 896 897 898 899 900
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
901 902 903 904 905 906 907
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
908 909 910 911 912 913 914 915 916 917 918 919
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
920
    which is equal to:
Z
zhangjinchao01 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
943
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
944 945 946 947
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
948
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
949 950
        param_attr = [param_attr]
    else:
951
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
952 953 954 955
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

956
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
957 958

    Layer(
Q
qijun 已提交
959 960 961
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
962 963 964 965 966
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
967 968 969
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
970

971

972
@wrap_name_default("print")
973
def printer_layer(input, format=None, name=None):
974 975
    """
    Print the output value of input layers. This layer is useful for debugging.
976 977 978 979 980

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
981
    :return: LayerOutput
982
    """
983 984 985 986 987
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
988 989 990

    Layer(
        name=name,
991
        format=format,
992
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
993
        inputs=[l.name for l in input], )
994
    # this layer don't return anything, can not be input of other layer.
995

X
xuwei06 已提交
996 997 998 999 1000 1001 1002
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1003

Y
yuan 已提交
1004
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1005
def priorbox_layer(input,
G
gaoyuan 已提交
1006
                   image,
G
gaoyuan 已提交
1007 1008 1009 1010 1011
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1012 1013 1014 1015 1016 1017 1018
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1019 1020
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1032
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1033 1034 1035
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1036
        inputs=[input.name, image.name],
Y
yuan 已提交
1037 1038 1039 1040 1041 1042
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1043 1044
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1045
        parents=[input, image],
G
gaoyuan 已提交
1046 1047 1048
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1066 1067
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1068
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1069
    :type input_conf: LayerOutput | List of LayerOutput
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1091
    input_loc_num = len(input_loc)
1092 1093 1094 1095 1096 1097

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1098
    input_conf_num = len(input_conf)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1140 1141
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1142
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1143
    :type input_conf: LayerOutput | List of LayerOutput.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1165
    input_loc_num = len(input_loc)
1166 1167 1168 1169 1170 1171

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1172 1173
    input_conf_num = len(input_conf)

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1202 1203
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1204 1205 1206 1207 1208
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1209

G
gaoyuan 已提交
1210 1211 1212 1213 1214 1215 1216 1217
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1218
    assert input.num_filters is not None
G
gaoyuan 已提交
1219 1220
    Layer(
        name=name,
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1234 1235
    return LayerOutput(
        name,
1236
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1237 1238 1239 1240 1241
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1242 1243 1244 1245
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1246 1247 1248 1249
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1250
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1251
                  stride=-1,
Z
zhangjinchao01 已提交
1252 1253 1254 1255
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1256 1257
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1258 1259 1260
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1261
    operation. Note that for sequence with sub-sequence, the default value
1262 1263
    of stride is -1.

Z
zhangjinchao01 已提交
1264 1265 1266 1267 1268 1269
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1270
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1271

L
Luo Tao 已提交
1272 1273
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1274 1275 1276 1277 1278 1279 1280 1281
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1282
    :param stride: The step size between successive pooling regions.
1283
    :type stride: Int
Z
zhangjinchao01 已提交
1284 1285 1286 1287
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1288
    :return: LayerOutput object.
Y
Yu Yang 已提交
1289
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1290 1291
    """
    extra_dict = dict()
1292
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1293 1294
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1295 1296 1297 1298
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1299 1300
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1301 1302 1303
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1304 1305 1306 1307 1308 1309
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1310
        stride=stride,
Q
qijun 已提交
1311
        **extra_dict)
Z
zhangjinchao01 已提交
1312

Q
qijun 已提交
1313 1314
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1315

Q
qijun 已提交
1316

Z
zhangjinchao01 已提交
1317 1318
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1319
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1320 1321 1322
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1323 1324
def lstmemory(input,
              name=None,
1325
              size=None,
Q
qijun 已提交
1326 1327 1328 1329 1330 1331
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1332 1333 1334 1335 1336 1337 1338 1339
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1340
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1341

L
luotao02 已提交
1342
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1343

L
luotao02 已提交
1344
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1345

L
luotao02 已提交
1346
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1347

L
luotao02 已提交
1348
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1349 1350


C
caoying03 已提交
1351
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1352
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1353 1354 1355 1356
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1357

C
caoying03 已提交
1358
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1359 1360
    to config a simple plain lstm layer.

C
caoying03 已提交
1361 1362 1363 1364
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1365 1366 1367 1368 1369

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1370 1371
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1390
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1391 1392 1393 1394 1395 1396
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1397
    assert input.size is not None and input.size % 4 == 0
1398

1399 1400 1401 1402 1403
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1404 1405 1406
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1407

Q
qijun 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1418

Q
qijun 已提交
1419 1420 1421 1422 1423
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1424

Z
zhangjinchao01 已提交
1425 1426 1427

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1428
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1429 1430 1431
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1432
def grumemory(input,
1433
              size=None,
Q
qijun 已提交
1434 1435 1436 1437 1438 1439
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1461 1462
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1463 1464 1465 1466 1467

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1468 1469 1470
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1471 1472 1473 1474 1475

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1476
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1477
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1478 1479 1480
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1481

C
caoying03 已提交
1482 1483 1484
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1496 1497
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1498
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1514
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1515 1516 1517 1518
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1519 1520 1521 1522 1523 1524
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1525 1526 1527
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1528

Q
qijun 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1538

Q
qijun 已提交
1539 1540 1541 1542 1543
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1544

Z
zhangjinchao01 已提交
1545 1546 1547

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1548 1549
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1550
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1551
             stride=-1,
Z
zhangjinchao01 已提交
1552 1553 1554 1555
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1556 1557 1558
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1559
    of stride is -1.
1560

L
Luo Tao 已提交
1561 1562 1563 1564 1565 1566
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1567 1568 1569 1570 1571
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1572
    :param stride: The step size between successive pooling regions.
1573
    :type stride: Int
Z
zhangjinchao01 已提交
1574 1575
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1576
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1577 1578
    :rtype: LayerOutput
    """
1579 1580 1581 1582 1583 1584
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1585
    if agg_level == AggregateLevel.TO_SEQUENCE:
1586 1587
        assert stride == -1

Z
zhangjinchao01 已提交
1588 1589 1590 1591 1592
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1593
        stride=stride,
Q
qijun 已提交
1594 1595 1596 1597 1598 1599
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1600 1601 1602 1603


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1604 1605
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1606
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1607
              stride=-1,
Z
zhangjinchao01 已提交
1608 1609 1610 1611
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1612 1613 1614
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1615
    of stride is -1.
1616

L
Luo Tao 已提交
1617 1618 1619 1620 1621 1622
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1623 1624 1625 1626 1627
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1628
    :param stride: The step size between successive pooling regions.
1629
    :type stride: Int
Z
zhangjinchao01 已提交
1630 1631
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1632
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1633 1634
    :rtype: LayerOutput
    """
1635 1636 1637 1638 1639 1640 1641

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1642
    if agg_level == AggregateLevel.TO_SEQUENCE:
1643 1644
        assert stride == -1

Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1650
        stride=stride,
Q
qijun 已提交
1651 1652 1653 1654 1655 1656
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1657 1658 1659


class ExpandLevel(object):
1660 1661 1662 1663 1664
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1665 1666
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1667 1668
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1669 1670
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1671 1672
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1673 1674
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1675 1676
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1677

1678

Z
zhangjinchao01 已提交
1679 1680
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1681 1682
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1683 1684
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1685
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1697
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1712
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1722 1723 1724 1725 1726 1727
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1728 1729


X
xuwei06 已提交
1730
@wrap_name_default()
X
xuwei06 已提交
1731
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1732
@layer_support()
X
xuwei06 已提交
1733 1734 1735
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1736
                 act=None,
X
xuwei06 已提交
1737 1738
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1739
    """
X
xuwei06 已提交
1740
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1741

X
xuwei06 已提交
1742
    If as_row_vector:
X
xuwei06 已提交
1743
    .. math::
X
xuwei06 已提交
1744 1745 1746 1747 1748
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1749 1750 1751 1752 1753

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1754
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1755 1756 1757 1758 1759 1760

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1761 1762 1763 1764 1765 1766
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1767 1768
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1779
        active_type=act.name,
X
xuwei06 已提交
1780
        num_filters=num_repeats,
X
xuwei06 已提交
1781
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1782
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1783 1784 1785 1786 1787
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1788
        activation=act,
Q
qijun 已提交
1789 1790
        parents=[input])

X
xuwei06 已提交
1791

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1804
    the dimension of each instance is M, and the input reshape_size is N, then the
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1876 1877
    :rtype: LayerOutput
    """
1878
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1879
    assert len(input) == 2
1880 1881 1882 1883 1884 1885 1886
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1887 1888 1889 1890
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1891 1892 1893 1894 1895 1896
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1897 1898


L
liaogang 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1915
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1916

L
liaogang 已提交
1917
    :param   input:        A input layer.
L
liaogang 已提交
1918
    :type    input:        LayerOutput.
L
liaogang 已提交
1919
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1920
    :type    out_size_x:   int|None
L
liaogang 已提交
1921
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1922
    :type    out_size_y:   int|None
L
liaogang 已提交
1923
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1924
    :type    name:         None|basestring
L
liaogang 已提交
1925
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1926 1927 1928 1929 1930 1931 1932
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1933
    assert input.num_filters is not None
L
liaogang 已提交
1934
    num_channels = input.num_filters
Q
qijun 已提交
1935 1936 1937 1938 1939 1940 1941
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1942
                channels=num_channels)),
Q
qijun 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1952

Z
zhangjinchao01 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1980
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1981 1982
    :rtype: LayerOutput
    """
1983 1984 1985
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1986 1987 1988
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1989
        inputs=[weight.name, input.name],
Q
qijun 已提交
1990 1991 1992
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1993 1994 1995 1996 1997 1998


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1999
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2000 2001

    .. math::
2002
       y  = w x
Z
zhangjinchao01 已提交
2003

2004 2005 2006 2007 2008
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2024
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2025 2026
    :rtype: LayerOutput
    """
2027 2028 2029
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2030 2031 2032 2033
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2034 2035 2036
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2037 2038 2039 2040 2041 2042


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2043
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2062
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2063 2064 2065 2066 2067 2068
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2069 2070 2071
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2072 2073


2074 2075
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2076
def rotate_layer(input, height, width, name=None, layer_attr=None):
2077
    """
H
Haonan 已提交
2078 2079
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2080 2081

    .. math::
H
Haonan 已提交
2082
       y(j,i,:) = x(M-i-1,j,:)
2083

H
Haonan 已提交
2084
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2085 2086 2087 2088 2089 2090

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2091 2092
                          height=100,
                          width=100)
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2106 2107 2108
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2109
        width=width,
H
Haonan 已提交
2110 2111 2112 2113 2114 2115 2116 2117
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2118 2119


Z
zhangjinchao01 已提交
2120 2121
@wrap_name_default()
@layer_support()
2122
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2123 2124 2125 2126
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2127
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2128 2129 2130 2131 2132
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2133

2134 2135
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2136

L
Luo Tao 已提交
2137 2138 2139 2140 2141 2142
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2155
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2156 2157
    :rtype: LayerOutput
    """
2158
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2159 2160 2161 2162 2163 2164
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2165
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2166
    else:
2167 2168
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2169 2170 2171 2172 2173 2174
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2175
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2176
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2177

2178

Z
zhangjinchao01 已提交
2179 2180
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2181
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2182
@layer_support()
Q
qijun 已提交
2183 2184
def hsigmoid(input,
             label,
2185
             num_classes=None,
Q
qijun 已提交
2186 2187 2188 2189
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2201
                        label=data_layer)
Z
zhangjinchao01 已提交
2202 2203 2204 2205 2206 2207 2208

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2209
    :type num_classes: int|None
L
luotao02 已提交
2210 2211
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2212 2213 2214
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2215 2216
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2217 2218
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2219
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2220 2221 2222 2223
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2224 2225 2226 2227 2228 2229 2230 2231 2232
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2233 2234 2235
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2236 2237 2238 2239 2240
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2241 2242
    ipts_for_layer = []
    parents = []
2243
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2244
        assert isinstance(each_input, LayerOutput)
2245
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2246 2247 2248 2249
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2250
    l = Layer(
Z
zhangjinchao01 已提交
2251 2252 2253 2254 2255
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2256 2257 2258
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2259

2260

Z
zhangjinchao01 已提交
2261 2262 2263 2264 2265
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2282 2283
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2284
    """
2285
    Convolution layer for image. Paddle can support both square and non-square
2286
    input currently.
Z
zhangjinchao01 已提交
2287 2288 2289 2290

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2291

2292
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2293
    and non-square input currently.
2294

X
xuwei06 已提交
2295
    The details of convolution transpose layer,
2296 2297 2298
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2299 2300 2301 2302
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2303 2304 2305
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2306
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2307 2308
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2309

L
Luo Tao 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2320 2321 2322 2323
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2324 2325 2326
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2327 2328 2329
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2330
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2331 2332 2333 2334 2335
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2336 2337 2338
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2339 2340
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2341 2342 2343
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2358 2359
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2360
    :param layer_type: specify the layer_type, default is None. If trans=True,
2361 2362
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2363
                       "cudnn_conv"
2364
    :type layer_type: String
D
dangqingqing 已提交
2365
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2366 2367 2368 2369 2370
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2371

Z
zhangjinchao01 已提交
2372
    if filter_size_y is None:
2373 2374 2375 2376 2377 2378
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2379
    if stride_y is None:
2380 2381 2382 2383 2384 2385
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2386
    if padding_y is None:
2387 2388 2389 2390 2391 2392 2393 2394
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2395
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2396 2397 2398 2399
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2400

2401 2402
    if layer_type:
        if trans:
2403
            assert layer_type in ["exconvt", "cudnn_convt"]
2404 2405 2406 2407 2408
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2409

X
xuwei06 已提交
2410
    l = Layer(
Z
zhangjinchao01 已提交
2411
        name=name,
Q
qijun 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2424 2425 2426 2427
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2428
        type=lt,
Q
qijun 已提交
2429 2430 2431 2432 2433 2434 2435 2436
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2437 2438 2439 2440


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2451 2452
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2453 2454 2455 2456 2457 2458 2459
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2488
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2489
    :type padding: int
2490 2491
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2492 2493 2494 2495
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2496
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2497
    :type pool_size: int
2498 2499
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2500 2501
    :param num_channels: number of input channel.
    :type num_channels: int
2502
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2503 2504
                      MaxPooling.
    :type pool_type: BasePoolingType
2505
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2506
    :type stride: int
2507 2508
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2509 2510
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2511 2512 2513 2514
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2515 2516
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2527
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2528
        if (
Y
Yu Yang 已提交
2529
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2530
        else pool_type.name
2531 2532 2533 2534 2535

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2536
    l = Layer(
Z
zhangjinchao01 已提交
2537 2538
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2551
                    padding_y=padding_y))
Q
qijun 已提交
2552
        ],
2553
        ceil_mode=ceil_mode,
Q
qijun 已提交
2554 2555 2556 2557 2558 2559 2560
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2561 2562


Q
qijun 已提交
2563 2564
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2565 2566 2567 2568 2569 2570
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2571 2572 2573 2574 2575
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2576 2577 2578 2579
    The example usage is:

    ..  code-block:: python

2580 2581 2582
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2583 2584
                        pool_type=MaxPooling())

Q
qijun 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2613
    l = Layer(
Q
qijun 已提交
2614 2615
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2616 2617 2618 2619 2620
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2621
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2633 2634 2635 2636
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2637
    l = Layer(
Q
qijun 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2657 2658 2659 2660


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2661 2662 2663 2664 2665 2666
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2667
                      layer_attr=None):
Z
zhangjinchao01 已提交
2668
    """
2669
    Response normalization across feature maps.
D
dangqingqing 已提交
2670 2671
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2672

L
Luo Tao 已提交
2673 2674 2675
    The example usage is:

    ..  code-block:: python
2676

L
Luo Tao 已提交
2677 2678
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2679
    :param name: layer name.
D
dangqingqing 已提交
2680
    :type name: None|basestring
Z
zhangjinchao01 已提交
2681 2682
    :param input: layer's input.
    :type input: LayerOutput
2683
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2684
    :type size: int
D
dangqingqing 已提交
2685
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2686
    :type scale: float
D
dangqingqing 已提交
2687
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2688 2689 2690 2691 2692
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2693
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2694 2695 2696
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2697
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2698 2699 2700


@wrap_bias_attr_default()
2701 2702
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2703 2704 2705
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2706 2707 2708 2709 2710 2711 2712
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2734 2735 2736
    The example usage is:

    ..  code-block:: python
2737

L
Luo Tao 已提交
2738 2739
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2754
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2782
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2802
    l = Layer(
Z
zhangjinchao01 已提交
2803
        name=name,
Q
qijun 已提交
2804 2805
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2806 2807 2808 2809 2810 2811
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2812
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2813

Q
qijun 已提交
2814 2815 2816 2817 2818 2819 2820
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2848
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2849 2850 2851 2852 2853 2854
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2855 2856 2857
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2858 2859 2860 2861 2862 2863


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2864
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2887 2888 2889
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2890 2891

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2892 2893
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2908
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2909 2910 2911 2912 2913 2914
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2915
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2916 2917 2918 2919 2920 2921 2922
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2923
    l = Layer(
Q
qijun 已提交
2924 2925 2926
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2927 2928
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2929
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2930

Q
qijun 已提交
2931 2932 2933 2934 2935 2936 2937
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2938 2939 2940 2941 2942


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2943
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2944 2945 2946 2947
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2948 2949 2950 2951 2952 2953
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2954 2955 2956
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2957
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2958 2959 2960 2961
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2962
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2963 2964 2965 2966 2967 2968 2969 2970
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2971
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2972 2973

    def __is_type__(o, tp):
2974
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2996 2997
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2998

Q
qijun 已提交
2999 3000
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3001

3002 3003
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3004

3005
    layer = Layer(
Q
qijun 已提交
3006 3007
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3008 3009
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3010
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3011
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3012

3013
    sz = layer.config.size
Z
zhangjinchao01 已提交
3014

Q
qijun 已提交
3015 3016 3017 3018 3019 3020 3021 3022
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3023 3024
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3025
@wrap_bias_attr_default(has_bias=False)
3026 3027 3028 3029 3030
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3031

3032
    Inputs:
X
xuwei06 已提交
3033
      - a = [a1, a2, ..., am]
3034
      - b = [b1, b2, ..., bn]
3035

X
xuwei06 已提交
3036 3037 3038 3039
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3057 3058 3059 3060
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3082
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3083 3084
def memory(name,
           size,
3085
           memory_name=None,
Q
qijun 已提交
3086 3087 3088 3089
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3110 3111 3112 3113 3114 3115 3116 3117 3118
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3119

3120 3121 3122 3123 3124 3125 3126
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3127 3128 3129
    :type name: basestring
    :param size: size of memory.
    :type size: int
3130 3131 3132
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3133
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3143
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3154 3155
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3156

3157 3158 3159 3160 3161 3162 3163 3164
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3165 3166

    lout = LayerOutput(
3167
        name=memory_name,
Q
qijun 已提交
3168 3169 3170
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3171 3172 3173 3174
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
3175 3176
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3177 3178 3179
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3180 3181
def lstm_step_layer(input,
                    state,
3182
                    size=None,
Q
qijun 已提交
3183 3184 3185 3186 3187 3188
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3189
    """
3190 3191
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3192 3193 3194

    ..  math::

3195
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3196

3197
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3198

3199
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3200

3201
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3202

L
luotao02 已提交
3203
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3204 3205


L
luotao02 已提交
3206
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3207
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3208
    input vectors.
Z
zhangjinchao01 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3219 3220
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3221 3222 3223 3224
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3225 3226
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3245
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3246 3247
    :rtype: LayerOutput
    """
3248 3249 3250

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3251 3252 3253 3254 3255 3256 3257
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3258
        size=state.size,
Q
qijun 已提交
3259 3260
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3261

Q
qijun 已提交
3262 3263 3264 3265 3266 3267 3268
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3269 3270 3271


@wrap_bias_attr_default()
W
wangyang59 已提交
3272
@wrap_param_attr_default()
Q
qijun 已提交
3273
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3274 3275 3276
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3277 3278 3279 3280 3281 3282 3283
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3284
                   param_attr=None,
Q
qijun 已提交
3285
                   layer_attr=None):
Z
zhangjinchao01 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3296 3297
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3298
    :param layer_attr:
D
dangqingqing 已提交
3299
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3300 3301 3302 3303 3304 3305 3306 3307
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3308 3309 3310 3311
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3312
        # backward model compatibility.
3313
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3314 3315 3316 3317
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3318
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3319
    return LayerOutput(
Q
qijun 已提交
3320 3321
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3322
        parents=[input, output_mem],
Q
qijun 已提交
3323 3324
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3325 3326


Y
Yu Yang 已提交
3327 3328 3329 3330
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3331
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3399 3400 3401 3402
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3403 3404 3405 3406
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3416
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3417 3418 3419 3420 3421 3422 3423
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3424 3425 3426 3427 3428 3429 3430
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3431

Q
qijun 已提交
3432 3433 3434 3435 3436
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3437 3438 3439 3440 3441 3442 3443


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3444 3445 3446 3447 3448 3449 3450
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3451
    """
3452 3453
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3482
    :return: LayerOutput object.
3483
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3484
    """
Q
qijun 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3500 3501 3502 3503 3504 3505


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3506 3507
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3508
    """
3509

Z
zhangjinchao01 已提交
3510 3511 3512
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3513
        assert input.size is not None
Z
zhangjinchao01 已提交
3514
        if size is not None:
3515
            assert input.size == size
Z
zhangjinchao01 已提交
3516 3517


3518
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3519
    """
3520
    DEPRECATED.
Z
zhangjinchao01 已提交
3521 3522 3523 3524 3525 3526 3527 3528
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3529
    return input
Z
zhangjinchao01 已提交
3530 3531 3532


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3533 3534 3535 3536 3537
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3538
                    is_generating=False):
Z
zhangjinchao01 已提交
3539
    """
C
caoying03 已提交
3540 3541 3542 3543 3544
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3589 3590
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3591
    :type reverse: bool
3592

3593 3594
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3595 3596 3597 3598 3599 3600 3601 3602 3603

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3604
    :param is_generating: If is generating, none of input type should be LayerOutput;
3605
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3606
                          be LayerOutput.
L
Luo Tao 已提交
3607

L
Liu Yiqun 已提交
3608
    :type is_generating: bool
3609

D
dangqingqing 已提交
3610
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3611 3612 3613 3614 3615
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
3616
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput)
Z
zhangjinchao01 已提交
3617 3618 3619

    if is_single_input(input):
        input = [input]
3620
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3621 3622

    def is_in_links(x):
3623
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3624 3625 3626 3627

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3628
        name=name,
3629 3630
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3631
    in_args = []
3632
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3633 3634 3635 3636
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3637
            has_LayerOutput = True
3638
        else:  # StaticInput
Z
zhangjinchao01 已提交
3639
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3640
            mem = memory(
3641
                name=None,
Q
qijun 已提交
3642 3643
                size=each_input.input.size,
                boot_layer=each_input.input)
3644
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3645 3646
            in_args.append(mem)

L
Luo Tao 已提交
3647
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3648

Z
zhangjinchao01 已提交
3649 3650 3651 3652 3653 3654 3655
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3656
        ot.reverse = reverse
3657
        RecurrentLayerGroupSetOutLink(ot.name)
Z
zhangjinchao01 已提交
3658 3659 3660

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3661 3662 3663 3664 3665
    for layer_out in layer_outs:
        # Thee previous full_name is the name is the rnn group
        # We need a full_name outside the rnn group
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3666 3667 3668 3669 3670
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3671

Z
zhangjinchao01 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3698 3699 3700
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3701
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3725
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3726 3727 3728 3729
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3740

3741

H
Haonan 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3778

Z
zhangjinchao01 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3795 3796
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3797 3798 3799 3800 3801 3802
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3803
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3804 3805
    :rtype: LayerOutput
    """
Q
qijun 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3817 3818 3819


@wrap_name_default()
Q
qijun 已提交
3820 3821 3822 3823 3824 3825 3826
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3827
                num_results_per_sample=None):
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3839
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3840 3841 3842 3843
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3844 3845 3846 3847 3848
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3849 3850
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3851 3852
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3853 3854
                               bos_id=0,
                               eos_id=1,
3855
                               beam_size=5)
3856 3857 3858 3859 3860 3861 3862 3863 3864

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3865
                 step, and it is applied to sequences with arbitrary length by
3866 3867 3868 3869 3870
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3871 3872
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3873
    :type input: list
3874 3875 3876
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3877
                   symbol is essential, since it is used to initialize the RNN
3878 3879 3880 3881 3882 3883 3884 3885
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3886 3887
    :param max_length: Max generated sequence length.
    :type max_length: int
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3898 3899
    :return: The generated word index.
    :rtype: LayerOutput
3900 3901
    """

Z
zhangjinchao01 已提交
3902 3903 3904 3905 3906
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3907
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3908 3909 3910 3911 3912 3913
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3914 3915
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3931 3932 3933 3934 3935 3936
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)
        return predict

Q
qijun 已提交
3946
    tmp = recurrent_group(
L
Luo Tao 已提交
3947 3948 3949 3950
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3951
        is_generating=True)
3952

Z
zhangjinchao01 已提交
3953 3954
    return tmp

Q
qijun 已提交
3955

3956 3957
def __cost_input__(input, label, weight=None):
    """
3958
    inputs and parents for cost layers.
3959 3960 3961 3962
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3963
        assert weight.size == 1
3964 3965 3966
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3967

Z
zhangjinchao01 已提交
3968 3969

@wrap_name_default()
L
luotao1 已提交
3970
@layer_support()
3971
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
3972
    """
L
Luo Tao 已提交
3973 3974 3975 3976
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
3977
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
3978 3979

    :param name: layer name.
3980
    :type name: basestring
Z
zhangjinchao01 已提交
3981
    :param input: Network prediction.
3982
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3983
    :param label: Data label.
3984 3985 3986 3987
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3988 3989
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
3990 3991
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3992
    :return: LayerOutput object.
3993
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3994
    """
3995 3996
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3997 3998 3999 4000
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4001
        coeff=coeff,
Q
qijun 已提交
4002
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4003
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4004 4005


L
Luo Tao 已提交
4006 4007 4008
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4009
@wrap_name_default("cost")
4010
@layer_support()
Q
qijun 已提交
4011 4012 4013 4014
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4015
                        evaluator=classification_error_evaluator,
4016 4017
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4027 4028 4029
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4030
    :param evaluator: Evaluator method.
4031 4032
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4033 4034
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4035
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4036 4037 4038 4039 4040
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4041 4042 4043

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4044 4045 4046 4047
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4048
        coeff=coeff,
Q
qijun 已提交
4049
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4060
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4061

4062
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4063 4064 4065 4066 4067
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4068
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4069

4070

Q
qijun 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4080 4081
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4092 4093
       op = conv_operator(img=input1,
                          filter=input2,
4094
                          filter_size=3,
Z
zhangjinchao01 已提交
4095 4096 4097
                          num_filters=64,
                          num_channels=64)

4098 4099 4100 4101
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4102 4103
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4104 4105 4106
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4107
    :type filter_size_y: int
4108 4109
    :param num_filters: channel of output data.
    :type num_filters: int
4110 4111
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4112
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4113
    :type stride: int
Z
zhangjinchao01 已提交
4114
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4115
    :type stride_y: int
Z
zhangjinchao01 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4129

4130 4131
    if num_channels is None:
        num_channels = img.num_filters
4132 4133 4134

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4135
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4136

4137 4138 4139
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4151

4152
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4153 4154
    return op

Q
qijun 已提交
4155

4156
@wrap_param_attr_default()
Q
qijun 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4167 4168
                    param_attr=None,
                    trans=False):
4169 4170 4171 4172 4173 4174 4175 4176 4177
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4178
       proj = conv_projection(input=input1,
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4193 4194
    :param num_channels: channel of input data.
    :type num_channels: int
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4207 4208
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4239
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4240 4241 4242 4243 4244
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4245 4246 4247
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4260 4261 4262 4263

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4264

D
dangqingqing 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4282

D
dangqingqing 已提交
4283
    For example,
4284

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4306 4307

    The simply usage is:
D
dangqingqing 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4369
@wrap_name_default()
L
luotao1 已提交
4370 4371
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4383 4384 4385 4386
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4387 4388 4389 4390 4391

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4392
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4393 4394 4395

    :param name: layer name
    :type name: basestring
4396 4397
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4398
    :param b: input layer b.
4399
    :type b: LayerOutput
L
luotao1 已提交
4400 4401
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4402
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4403 4404
    :rtype: LayerOutput
    """
4405 4406
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4407 4408 4409
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4410
        inputs=[a.name, b.name],
Q
qijun 已提交
4411
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4412

Q
qijun 已提交
4413 4414
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4415 4416 4417 4418 4419


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4420
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4421
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4422 4423 4424 4425 4426 4427 4428 4429
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4430 4431 4432 4433 4434
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4435
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4436 4437

    In this formular:
4438 4439
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4440 4441
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4442
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4443 4444 4445 4446 4447

    The simple usage is:

    .. code-block:: python

4448
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4449 4450 4451

    :param name: layer name
    :type name: basestring
4452 4453 4454 4455
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4456
    :param size: the layer dimension.
L
luotao02 已提交
4457
    :type size: int.
Z
zhangjinchao01 已提交
4458 4459 4460
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4461
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4462 4463 4464 4465 4466 4467
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4468
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4469 4470
    :rtype: LayerOutput
    """
4471
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4472 4473 4474 4475 4476 4477
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4478 4479 4480 4481
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4482 4483 4484 4485 4486 4487


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4488
@layer_support()
Q
qijun 已提交
4489 4490
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4491
                       select=None,
Q
qijun 已提交
4492 4493
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4494 4495 4496
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4497 4498 4499
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4510
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4511 4512 4513 4514 4515

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4516 4517
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4518
                   If is None, acts exactly like fc_layer.
4519
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4532
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4533 4534 4535 4536
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4537
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4538 4539
        param_attr = [param_attr]
    else:
4540
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4541 4542 4543 4544
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4545 4546 4547 4548
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4549
    Layer(
Q
qijun 已提交
4550 4551 4552
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4553 4554 4555
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4556
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4557 4558 4559 4560
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4561 4562 4563 4564 4565 4566 4567
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4568 4569 4570


@wrap_name_default()
L
luotao1 已提交
4571 4572
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4587 4588
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4589
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4590 4591
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4592
    l = Layer(
Z
zhangjinchao01 已提交
4593 4594 4595
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4596 4597 4598
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4599 4600 4601


@wrap_name_default()
L
luotao1 已提交
4602
@layer_support()
Q
qijun 已提交
4603 4604 4605 4606
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4607
                          layer_attr=None):
Z
zhangjinchao01 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4629 4630
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4631
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4632 4633 4634 4635 4636 4637 4638 4639
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4640 4641 4642
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4643 4644 4645


@wrap_name_default()
L
luotao1 已提交
4646
@layer_support()
Q
qijun 已提交
4647
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4648
    """
4649 4650 4651 4652
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4653 4654 4655

    .. math::

4656
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4657

4658 4659 4660 4661 4662
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4663

4664
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4665 4666

    In this formular:
4667 4668 4669 4670 4671 4672
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4673 4674 4675 4676 4677

    The simple usage is:

    .. code-block:: python

4678
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4679 4680
                                       size=elem_dim)

4681 4682 4683 4684
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4685 4686 4687 4688
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4689 4690
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4691
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4692 4693
    :rtype: LayerOutput
    """
4694 4695 4696 4697
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4698
            size = vectors.size / weights.size
4699 4700
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4701 4702
    Layer(
        name=name,
4703
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4704
        size=size,
4705
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4706 4707 4708
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4709

4710

4711
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4712

4713

Z
zhangjinchao01 已提交
4714
@wrap_name_default()
L
luotao1 已提交
4715
@layer_support()
Z
zhangjinchao01 已提交
4716 4717 4718 4719 4720 4721 4722
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4723
                       num_channels=None,
L
luotao1 已提交
4724 4725
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4726 4727
    """
    Expand feature map to minibatch matrix.
4728
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4729
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4740
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4741 4742
    convolution neural network, and before recurrent neural network.

4743 4744 4745 4746
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4747
       block_expand = block_expand_layer(input=layer,
4748
                                         num_channels=128,
4749 4750 4751 4752 4753
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4754 4755
    :param input: The input layer.
    :type input: LayerOutput
4756 4757
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4772 4773
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4774
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4775 4776
    :rtype: LayerOutput
    """
4777 4778 4779
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4797 4798


4799 4800
@wrap_name_default()
@layer_support()
4801
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4802 4803 4804 4805 4806
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4807
    So groups should be larger than 1, and the num of channels should be able
4808 4809
    to devided by groups.

X
xuwei06 已提交
4810 4811 4812 4813 4814 4815 4816 4817
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4818
    Please refer to Paper:
4819 4820 4821 4822
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4823

4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4862 4863


Z
zhangjinchao01 已提交
4864
@wrap_name_default()
L
luotao1 已提交
4865
@layer_support()
Q
qijun 已提交
4866 4867 4868 4869 4870
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4871
              layer_attr=None):
Z
zhangjinchao01 已提交
4872 4873 4874 4875 4876
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4877 4878
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4879 4880
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4881 4882 4883 4884 4885 4886 4887 4888

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4889
    The example usage is:
Z
zhangjinchao01 已提交
4890 4891 4892 4893 4894 4895 4896 4897

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4898
    :param input: The input layer.
Z
zhangjinchao01 已提交
4899 4900 4901
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4902
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4903
    :type size: int
4904 4905
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4906 4907
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4908 4909
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4910
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4911 4912 4913 4914
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4915 4916 4917 4918 4919
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4920
    Layer(
4921 4922 4923 4924
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4925
        inputs=[input.name, label.name],
Q
qijun 已提交
4926
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4927 4928
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4929

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
4941
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4942
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4960 4961 4962 4963

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
4964
    icml2006_GravesFGS06.pdf>`_.
4965 4966 4967

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
4968 4969 4970
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4971 4972
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4973
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4974
          'linear' activation is expected instead in the 'input' layer.
4975

C
caoying03 已提交
4976
    The example usage is:
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5022
@wrap_name_default()
5023
@wrap_param_attr_default()
L
luotao1 已提交
5024
@layer_support()
Q
qijun 已提交
5025 5026 5027 5028 5029 5030
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5031
              coeff=1.0,
L
luotao1 已提交
5032
              layer_attr=None):
Z
zhangjinchao01 已提交
5033 5034 5035 5036
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5037
    The example usage is:
Z
zhangjinchao01 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5048
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5058 5059
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5060 5061
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5062
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5063 5064 5065 5066 5067
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5068 5069 5070 5071 5072 5073
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5074

Q
qijun 已提交
5075
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5076 5077 5078 5079
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5080 5081 5082 5083
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5084
        coeff=coeff,
Q
qijun 已提交
5085
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5086 5087 5088
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5089 5090 5091 5092
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5093

5094

Z
zhangjinchao01 已提交
5095
@wrap_name_default()
5096
@wrap_param_attr_default()
L
luotao1 已提交
5097
@layer_support()
Q
qijun 已提交
5098 5099 5100 5101 5102
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5103
                       layer_attr=None):
Z
zhangjinchao01 已提交
5104 5105 5106 5107 5108 5109 5110
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5111
    The example usage is:
L
Luo Tao 已提交
5112 5113 5114 5115 5116 5117

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5128 5129
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5130
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5131 5132 5133 5134 5135 5136
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5137
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5138 5139 5140 5141
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5142 5143 5144 5145
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5146
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5147 5148 5149
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5150 5151 5152 5153
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5154

Q
qijun 已提交
5155

Y
Yu Yang 已提交
5156
@wrap_act_default(act=SigmoidActivation())
5157
@wrap_bias_attr_default(has_bias=True)
5158
@wrap_param_attr_default()
5159 5160
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5161 5162
def nce_layer(input,
              label,
C
caoying03 已提交
5163
              num_classes=None,
Y
Yu Yang 已提交
5164
              act=None,
5165
              param_attr=None,
Q
qijun 已提交
5166 5167 5168 5169 5170 5171
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5172 5173 5174 5175 5176 5177 5178 5179 5180
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5181 5182
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5194
    :type num_classes: int
Y
Yu Yang 已提交
5195 5196
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5197 5198
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5199
    :param num_neg_samples: number of negative samples. Default is 10.
5200
    :type num_neg_samples: int
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5214 5215 5216 5217 5218 5219 5220 5221
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5222
    assert isinstance(input, collections.Sequence)
5223

5224 5225
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5226 5227
    if num_classes is None:
        num_classes = label.size
5228 5229 5230
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5231
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5232 5233
    if not isinstance(act, BaseActivation):
        raise TypeError()
5234

5235 5236
    ipts_for_layer = []
    parents = []
5237
    for each_input, attr in zip(input, param_attr):
5238
        assert isinstance(each_input, LayerOutput)
5239
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5250
    l = Layer(
5251 5252 5253 5254
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5255
        active_type=act.name,
5256 5257 5258
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5259 5260
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5261 5262 5263 5264 5265
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5266

5267

Z
zhangjinchao01 已提交
5268 5269 5270
"""
following are cost Layers.
"""
5271 5272


Z
zhangjinchao01 已提交
5273
@wrap_name_default()
L
luotao1 已提交
5274
@layer_support()
Q
qijun 已提交
5275 5276 5277 5278 5279 5280 5281
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5282
    """
5283
    A cost Layer for learning to rank using gradient descent. Details can refer
5284 5285
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5286 5287 5288 5289 5290
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5291
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5292

L
luotao02 已提交
5293
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5294

L
luotao02 已提交
5295
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5296 5297 5298 5299 5300 5301 5302 5303

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5304
    The example usage is:
Z
zhangjinchao01 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5325 5326
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5327
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5340 5341 5342 5343 5344 5345
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5346

X
xuwei06 已提交
5347
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5348

5349

Z
zhangjinchao01 已提交
5350
@wrap_name_default()
L
luotao1 已提交
5351
@layer_support()
Q
qijun 已提交
5352 5353 5354 5355 5356 5357
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5358 5359 5360
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5361
    The example usage is:
Z
zhangjinchao01 已提交
5362 5363 5364 5365 5366 5367 5368 5369

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5370
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5382 5383 5384
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5385 5386 5387
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5388 5389
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5390
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5391 5392
    :rtype: LayerOutput
    """
5393 5394 5395
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5396 5397 5398 5399 5400 5401 5402
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5403

Q
qijun 已提交
5404 5405
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5406

5407

Z
zhangjinchao01 已提交
5408
@wrap_name_default()
L
luotao1 已提交
5409
@layer_support()
5410 5411 5412 5413 5414 5415
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5416 5417 5418
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5419 5420
    The example usage is:

Z
zhangjinchao01 已提交
5421 5422
    .. code-block:: python

X
xuwei06 已提交
5423
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5424
                            label=label_layer)
Z
zhangjinchao01 已提交
5425 5426 5427 5428 5429 5430 5431

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5432 5433
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5434
    :type coeff: float.
5435 5436 5437 5438
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5439 5440
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5441
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5442 5443 5444
    :rtype: LayerOutput.
    """

5445
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5446 5447 5448
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5449
        inputs=ipts,
Q
qijun 已提交
5450 5451
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5452
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5453

5454

Z
zhangjinchao01 已提交
5455
@wrap_name_default()
L
luotao1 已提交
5456
@layer_support()
Q
qijun 已提交
5457 5458 5459 5460
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5461 5462
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5463 5464
    """
    A loss layer for multi class entropy with selfnorm.
5465
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5466

C
caoying03 已提交
5467 5468
    The example usage is:

Z
zhangjinchao01 已提交
5469 5470
    .. code-block:: python

X
xuwei06 已提交
5471
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5472
                                          label=label_layer)
Z
zhangjinchao01 已提交
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5484 5485
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5486
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5487 5488
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5489 5490 5491 5492 5493 5494 5495
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5496

Q
qijun 已提交
5497 5498 5499 5500 5501
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5502

5503

X
xuwei06 已提交
5504 5505 5506 5507 5508 5509
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5510 5511
    The example usage is:

X
xuwei06 已提交
5512 5513
    .. code-block:: python

L
Luo Tao 已提交
5514
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5525
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5526 5527 5528 5529 5530
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5531

Q
qijun 已提交
5532
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5533 5534


Z
zhangjinchao01 已提交
5535
@wrap_name_default()
L
luotao1 已提交
5536 5537
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5538 5539 5540
    """
    A loss layer for huber loss.

C
caoying03 已提交
5541 5542
    The example usage is:

Z
zhangjinchao01 已提交
5543 5544
    .. code-block:: python

X
xuwei06 已提交
5545
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5546
                         label=label_layer)
Z
zhangjinchao01 已提交
5547 5548 5549 5550 5551 5552 5553 5554 5555

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5556 5557
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5558
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5559 5560
    :rtype: LayerOutput.
    """
5561 5562 5563
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5564 5565 5566 5567 5568 5569
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5570
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5571

5572

Z
zhangjinchao01 已提交
5573
@wrap_name_default()
L
luotao1 已提交
5574
@layer_support()
Q
qijun 已提交
5575 5576 5577 5578
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5579
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5580 5581 5582
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5583 5584
    The example usage is:

Z
zhangjinchao01 已提交
5585 5586
    .. code-block:: python

X
xuwei06 已提交
5587
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5588
                                               label=label_layer)
Z
zhangjinchao01 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5598 5599
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5600
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5601 5602 5603
    :rtype: LayerOutput
    """

5604 5605
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5622 5623 5624 5625


@wrap_name_default()
@layer_support()
5626
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5627 5628
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5629
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5639
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5640

D
dangqingqing 已提交
5641 5642 5643
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5644 5645
    The example usage is:

D
dangqingqing 已提交
5646 5647
    .. code-block:: python

5648 5649
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5650 5651 5652 5653 5654 5655 5656

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5657 5658
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5672
        coeff=coeff,
D
dangqingqing 已提交
5673 5674 5675
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5695 5696
    The example usage is:

W
wwhu 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5729 5730


5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5747 5748


D
dangqingqing 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5771

D
dangqingqing 已提交
5772 5773 5774 5775 5776
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5777

D
dangqingqing 已提交
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5821 5822


5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5842 5843 5844 5845 5846 5847
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5848 5849 5850 5851 5852
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5853 5854 5855 5856 5857 5858

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5859 5860 5861 5862 5863 5864 5865 5866
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
5867 5868
    assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
    assert isinstance(param_attr, ParameterAttribute)
5869 5870 5871

    l = Layer(
        name=name,
C
caoying03 已提交
5872
        type=LayerType.PRELU,
C
caoying03 已提交
5873
        inputs=Input(input.name, **param_attr.attr),
5874 5875 5876 5877 5878 5879 5880
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5881 5882 5883


@layer_support()
5884 5885
@wrap_name_default('switch_order')
def switch_order_layer(input, name=None, reshape=None, layer_attr=None):
5886
    """
5887 5888 5889
    This layer switch dimension order of image input. 
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
5890 5891 5892 5893

    The example usage is:

    .. code-block:: python
5894 5895
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
       switch = switch_order(input=layer, name='switch', reshape=reshape)
5896 5897 5898

    :param input: The input layer.
    :type input: LayerOutput
5899 5900 5901 5902
    :param name: Name of this layer.
    :type name: basestring
    :param reshape: reshape matrix by axises.
    :type reshape: Dict
5903 5904 5905
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
5906
    assert isinstance(input, LayerOutput)
5907 5908
    l = Layer(
        name=name,
5909 5910 5911
        inputs=input,
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
5912 5913 5914
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
5915
        layer_type=LayerType.SWITCH_ORDER_LAYER,
5916 5917
        parents=input,
        size=l.config.size)