elementwise_mul_mkldnn_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21
#include "paddle/fluid/operators/math/jit_kernel.h"
22 23
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
24

25 26 27 28
namespace paddle {
namespace operators {

using framework::DataLayout;
29
using mkldnn::memory;
30
using platform::StringToMKLDNNFormat;
31 32

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
33 34
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
35
    auto format_as_string = ctx.Attr<std::string>(attribute);
36
    auto format = StringToMKLDNNFormat(&format_as_string);
37 38 39 40 41 42
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

43 44 45
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
46
                         const mkldnn::engine& engine, bool isFourDim) {
47 48 49 50 51 52
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
53 54 55 56 57 58
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
59 60 61 62
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
79
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
80

81 82
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
83

84 85
    Xbyak::util::Cpu cpu;
    const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
86 87 88
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
89 90
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
91 92
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
93

94 95 96 97 98
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
99

100 101 102 103
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
104

105 106
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
107

108 109
        constexpr int simd_width = 16;
        int C = c / simd_width;
110

111 112 113
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
114

115
#pragma omp parallel for collapse(2)
116 117 118
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
119
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
120

121 122
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
123
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
124

125
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
126 127 128
          }
        }
      }
129 130 131

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
132 133
    } else {
      // Fallback to naive version:
134
      const bool are_inputs_in_same_format = x->format() == y->format();
135
      const bool is_x_nchw = x->format() == memory::format::nchw;
136
      const bool is_x_nc = x->format() == memory::format::nc;
137
      const bool is_y_nchw = y->format() == memory::format::nchw;
138
      const bool is_y_nc = y->format() == memory::format::nc;
139
      if (!are_inputs_in_same_format) {
140 141 142
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
143
        if (!(is_x_nchw || is_x_nc))
144
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
145 146
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
147
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
148
                          y->dims().size() == 4);
149 150
      }

151 152 153 154 155 156 157 158
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
175 176 177 178 179 180 181 182 183 184 185 186
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)