Vector.cpp 28.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Vector.h"
Y
Yu Yang 已提交
16
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
17 18

#include <memory>
H
Haonan 已提交
19
#include "Matrix.h"
Z
zhangjinchao01 已提交
20 21
#include "hl_gpu.h"
#include "hl_table_apply.h"
Y
Yu Yang 已提交
22 23 24 25
#include "paddle/utils/Flags.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Thread.h"
#include "paddle/utils/ThreadLocal.h"
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {

template <class T>
std::shared_ptr<VectorT<T>> VectorT<T>::create(size_t size, bool useGpu) {
  if (useGpu) {
    return std::make_shared<GpuVectorT<T>>(size);
  } else {
    return std::make_shared<CpuVectorT<T>>(size);
  }
}

template <class T>
std::shared_ptr<VectorT<T>> VectorT<T>::createParallelVector(
    size_t size, bool useGpu, SyncThreadPool* pool) {
  if (!useGpu && FLAGS_trainer_count > 1 && FLAGS_enable_parallel_vector &&
      size >= (size_t)FLAGS_enable_parallel_vector) {
    return std::make_shared<ParallelCpuVectorT<T>>(
        size, pool ? pool : getGlobalSyncThreadPool());
  } else {
    return create(size, useGpu);
  }
}

template <class T>
51 52
std::shared_ptr<VectorT<T>> VectorT<T>::create(T* data,
                                               size_t size,
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
                                               bool useGpu) {
  if (useGpu) {
    return std::make_shared<GpuVectorT<T>>(size, data);
  } else {
    return std::make_shared<CpuVectorT<T>>(size, data);
  }
}

template <class T>
std::shared_ptr<VectorT<T>> VectorT<T>::create(size_t size,
                                               MemoryHandlePtr memoryHandle,
                                               size_t offset) {
  if (auto cpuMemHandle =
66
          std::dynamic_pointer_cast<CpuMemoryHandle>(memoryHandle)) {
Z
zhangjinchao01 已提交
67 68
    return std::make_shared<CpuVectorT<T>>(size, cpuMemHandle, offset);
  } else if (auto gpuMemHandle =
69
                 std::dynamic_pointer_cast<GpuMemoryHandle>(memoryHandle)) {
Z
zhangjinchao01 已提交
70 71 72 73 74 75 76
    return std::make_shared<GpuVectorT<T>>(size, gpuMemHandle, offset);
  } else {
    LOG(FATAL) << "Wrong";
    return NULL;
  }
}

H
Haonan 已提交
77 78
template <>
MatrixPtr VectorT<real>::toOneHotSparseMatrix(size_t idRange, bool useGpu) {
79 80
  LOG(FATAL) << "Wrong for real vector";
  return nullptr;
H
Haonan 已提交
81 82 83 84
}

template <>
MatrixPtr VectorT<int>::toOneHotSparseMatrix(size_t idRange, bool useGpu) {
Y
Yu Yang 已提交
85 86
  size_t height = getSize();
  size_t width = idRange;
H
Haonan 已提交
87 88 89 90 91
  MatrixPtr mat = Matrix::createSparseMatrix(
      height, idRange, height, NO_VALUE, SPARSE_CSR, false, useGpu);

  CpuIVector cpuIds(height);
  cpuIds.copyFrom(*this);
92
  int* idData = cpuIds.getData();
H
Haonan 已提交
93

94
  for (decltype(height) i = 0; i < height; i++) {
H
Haonan 已提交
95 96 97 98 99 100 101
    const unsigned int id = idData[i];
    CHECK_LT(id, width);
    mat->setRow(i, 1, &id, nullptr);
  }
  return mat;
}

Z
zhangjinchao01 已提交
102 103
template <class T>
GpuVectorT<T>::GpuVectorT(size_t size)
104 105
    : VectorT<T>(size,
                 std::make_shared<GpuMemoryHandle>(sizeof(T) * size),
Z
zhangjinchao01 已提交
106 107 108 109 110 111
                 0, /* offset = 0 */
                 true /* useGpu = true */) {}

template <class T>
T GpuVectorT<T>::getElement(size_t i) const {
  T elem = 0;
112
  hl_memcpy_device2host(&elem, const_cast<T*>(&this->getData()[i]), sizeof(T));
Z
zhangjinchao01 已提交
113 114 115 116
  return elem;
}
template <class T>
void GpuVectorT<T>::setElement(size_t i, const T& value) {
117
  hl_memcpy_host2device(&this->getData()[i], const_cast<T*>(&value), sizeof(T));
Z
zhangjinchao01 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
}

template <class T>
T* GpuVectorT<T>::getPoint(const uint64_t beginPos) {
  LOG(FATAL) << "Not implemented" << beginPos;
  return NULL;
}

template <>
int GpuVectorT<int>::getAbsSum() {
  LOG(FATAL) << "Not implemented";
  return 0;
}

template <>
int GpuVectorT<int>::getSum() {
  LOG(FATAL) << "Not implemented";
  return 0;
}

template <>
real GpuVectorT<real>::getAbsSum() {
  real* A = this->getData();
  real sum = 0;
  hl_vector_abs_sum(A, &sum, this->getSize());
  return sum;
}

template <>
real GpuVectorT<real>::getSum() {
  real* A = this->getData();
  real sum = 0;
  hl_vector_sum(A, &sum, this->getSize());
  return sum;
}

template <>
int GpuVectorT<int>::getMax() {
  CpuIVector cpuIVec = CpuIVector(this->getSize());
  copyTo(&cpuIVec);
  return cpuIVec.getMax();
}

template <>
int GpuVectorT<int>::getAbsMax() {
  CpuIVector cpuIVec = CpuIVector(this->getSize());
  copyTo(&cpuIVec);
  return cpuIVec.getAbsMax();
}

template <class T>
void GpuVectorT<T>::isEqualTo(const VectorT<T>& b, const T& value) {
  BaseMatrixT<T>::isEqualTo((BaseMatrixT<T>&)b, value);
}

template <class T>
void GpuVectorT<T>::selectFrom(const VectorT<T>& src, const VectorT<int>& ids) {
#ifndef PADDLE_ONLY_CPU
  hl_vector_select_from<T>(this->getData(),
                           this->getSize(),
                           src.getData(),
                           src.getSize(),
                           ids.getData(),
                           ids.getSize());
#endif
}

template <class Func>
real gpuRowFunc(Func f, GpuVector& v) {
  static ThreadLocal<std::unique_ptr<CpuVectorT<real>>> local;
  if (!*local) {
    (*local).reset(new CpuVector(1));
  }
  real* A = v.getData();
  f(A, (*local)->getData(), 1, v.getSize());
  return (*local)->getData()[0];
}

template <>
real GpuVectorT<real>::getMax() {
  return gpuRowFunc(hl_matrix_row_max, *this);
}

template <>
real GpuVectorT<real>::getAbsMax() {
  return std::max(gpuRowFunc(hl_matrix_row_max, *this),
                  -gpuRowFunc(hl_matrix_row_min, *this));
}

template <>
int GpuVectorT<int>::getMin() {
  LOG(FATAL) << "Not implemented";
  return 0;
}

template <>
real GpuVectorT<real>::getMin() {
  return gpuRowFunc(hl_matrix_row_min, *this);
}

template <class T>
T GpuVectorT<T>::get(size_t pos) {
  T val = (T)0;
221
  hl_memcpy_device2host((void*)&val, (void*)(this->getData() + pos), sizeof(T));
Z
zhangjinchao01 已提交
222 223 224 225 226 227 228 229
  return val;
}

template <class T>
void GpuVectorT<T>::histogram(std::ostream& os, int type) {
  LOG(FATAL) << "Not implemented";
}

230
template <class T>
Z
zhangjinchao01 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
void GpuVectorT<T>::zeroMem() {
  BaseMatrixT<T>::zero();
}

template <class T>
void GpuVectorT<T>::reset(const T& value) {
  BaseMatrixT<T>::assign(value);
}

template <class T>
void GpuVectorT<T>::fillSequence() {
  LOG(FATAL) << "not implemented";
}

template <class T>
void GpuVectorT<T>::copyFrom(const VectorT<T>& src) {
  src.copyTo(this);
}

template <class T>
void GpuVectorT<T>::copyFrom(const VectorT<T>& src, hl_stream_t stream) {
  CHECK_EQ(src.getSize(), this->getSize());
253 254 255 256
  hl_memcpy_async((void*)this->getData(),
                  (void*)src.getData(),
                  sizeof(T) * this->getSize(),
                  stream);
Z
zhangjinchao01 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
}

template <class T>
void GpuVectorT<T>::copyFrom(const T* gpuSrc, size_t size) {
  CHECK(gpuSrc != NULL);
  CHECK_LE(size, this->size_);

  hl_memcpy((void*)this->getData(), (void*)gpuSrc, sizeof(T) * size);
}

template <class T>
void GpuVectorT<T>::copyFrom(const T* gpuSrc, size_t size, hl_stream_t stream) {
  CHECK(gpuSrc != NULL);
  CHECK_LE(size, this->size_);

272 273
  hl_memcpy_async(
      (void*)this->getData(), (void*)gpuSrc, sizeof(T) * size, stream);
Z
zhangjinchao01 已提交
274 275 276 277 278 279
}

template <class T>
void GpuVectorT<T>::copyTo(CpuVectorT<T>* dest) const {
  CHECK_EQ(this->getSize(), dest->getSize());

280 281
  hl_memcpy_device2host((void*)dest->getData(),
                        (void*)this->getData(),
Z
zhangjinchao01 已提交
282 283 284 285 286 287 288
                        sizeof(T) * this->getSize());
}

template <class T>
void GpuVectorT<T>::copyTo(GpuVectorT<T>* dest) const {
  CHECK_EQ(this->getSize(), dest->getSize());

289 290
  hl_memcpy_device2device((void*)dest->getData(),
                          (void*)this->getData(),
Z
zhangjinchao01 已提交
291 292 293 294 295 296 297 298 299 300 301
                          sizeof(T) * this->getSize());
}

template <>
void GpuVectorT<int>::rand() {
  LOG(FATAL) << "Not implemented";
}

template <>
void GpuVectorT<int>::print(std::ostream& os, size_t num) const {
  IVectorPtr dest = IVector::create(this->size_, false);
302 303
  hl_memcpy_device2host((void*)dest->getData(),
                        (void*)this->getData(),
Z
zhangjinchao01 已提交
304 305 306 307 308 309 310
                        sizeof(int) * this->getSize());
  dest->print(os, num);
}

template <>
void GpuVectorT<real>::print(std::ostream& os, size_t num) const {
  VectorPtr dest = Vector::create(this->size_, false);
311 312
  hl_memcpy_device2host((void*)dest->getData(),
                        (void*)this->getData(),
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                        sizeof(int) * this->getSize());
  dest->print(os, num);
}

template <>
void GpuVectorT<int>::printOneElement(std::ostream& os, size_t idx) const {
  LOG(FATAL) << "Not implemented";
}

template <>
void GpuVectorT<real>::printOneElement(std::ostream& os, size_t idx) const {
  LOG(FATAL) << "Not implemented";
}

template <>
void CpuVectorT<int>::rand() {
  LOG(FATAL) << "Not implemented";
}
template <>
void GpuVectorT<real>::rand(size_t classNum) {
  LOG(FATAL) << "Not implemented";
}

template <>
void CpuVectorT<real>::rand(size_t classNum) {
  LOG(FATAL) << "Not implemented";
}

template <>
void GpuVectorT<real>::rand() {
  VectorPtr cPtr = Vector::create(this->size_, false);
  cPtr->rand();

  hl_memcpy_host2device(data_, cPtr->getData(), this->size_ * sizeof(real));
}

template <>
void GpuVectorT<int>::rand(size_t classNum) {
  IVectorPtr cPtr = IVector::create(this->size_, false);
  cPtr->rand(classNum);

  hl_memcpy_host2device(data_, cPtr->getData(), this->size_ * sizeof(int));
}

template <>
void CpuVectorT<int>::rand(size_t classNum) {
  size_t size = this->getSize();
  int* data = this->getData();
  for (size_t i = 0; i < size; i++) {
    data[i] =
        std::min(classNum - 1,
                 size_t(::rand() * (1. / ((double)RAND_MAX + 1)) * classNum));
  }
}

template <>
void CpuVectorT<real>::rand() {
  size_t size = this->getSize();
  real* data = this->getData();
  for (size_t i = 0; i < size; i++) {
    data[i] = ::rand() * (1. / (double)RAND_MAX);
    // data[ii] = ((temp > RAND_MAX/2)? 1 : -1) *
    // sqrt( abs((temp-RAND_MAX/2))/(double(RAND_MAX))/2048 );
  }
}

template <class T>
void CpuVectorT<T>::randnorm(real, real) {
  LOG(FATAL) << "Not implemented";
}

template <class T>
void CpuVectorT<T>::uniform(real, real) {
  LOG(FATAL) << "Not implemented";
}

template <class T>
void GpuVectorT<T>::randnorm(real, real) {
  LOG(FATAL) << "Not implemented";
}

template <class T>
void GpuVectorT<T>::uniform(real, real) {
  LOG(FATAL) << "Not implemented";
}

template <>
void CpuVectorT<real>::randnorm(real mean, real std) {
  size_t size = this->getSize();
  real* data = this->getData();
  unsigned int* seed = ThreadLocalRand::getSeed();
  auto rand1 = [&]() { return (1. + ::rand_r(seed)) * (1. / (1. + RAND_MAX)); };
  for (size_t i = 0; i < size - 1; i += 2) {
    real r1 = rand1();
    r1 = std::sqrt(-2 * std::log(r1));
    real r2 = rand1();
    data[i] = mean + std * r1 * cos(2 * M_PI * r2);
    data[i + 1] = mean + std * r1 * sin(2 * M_PI * r2);
  }
  real r1 = rand1();
  r1 = std::sqrt(-2 * std::log(r1));
  real r2 = rand1();
  data[size - 1] = mean + std * r1 * cos(2 * M_PI * r2);
}

template <>
void CpuVectorT<real>::uniform(real left, real right) {
  size_t size = this->getSize();
  real* data = this->getData();
  real range = right - left;
  unsigned int* seed = ThreadLocalRand::getSeed();
  auto rand1 = [&]() { return ::rand_r(seed) * (1. / (1. + RAND_MAX)); };
  for (size_t i = 0; i < size; ++i) {
    data[i] = rand1() * range + left;
  }
}

template <>
void GpuVectorT<real>::randnorm(real mean, real std) {
  CpuVector cpuVec = CpuVector(this->getSize());
  cpuVec.randnorm(mean, std);

435 436
  hl_memcpy_host2device(
      data_, cpuVec.getData(), this->getSize() * sizeof(real));
Z
zhangjinchao01 已提交
437 438 439 440 441 442 443
}

template <>
void GpuVectorT<real>::uniform(real left, real right) {
  CpuVector cpuVec = CpuVector(this->getSize());
  cpuVec.uniform(left, right);

444 445
  hl_memcpy_host2device(
      data_, cpuVec.getData(), this->getSize() * sizeof(real));
Z
zhangjinchao01 已提交
446 447 448 449
}

template <class T>
CpuVectorT<T>::CpuVectorT(size_t size)
450 451
    : VectorT<T>(size,
                 std::make_shared<CpuMemoryHandle>(sizeof(T) * size),
Z
zhangjinchao01 已提交
452 453 454 455 456
                 0, /* offset = 0 */
                 false /* useGpu = false */) {}

template <class T>
CpuVectorT<T>::CpuVectorT(const VectorT<T>& src)
457 458 459
    : VectorT<T>(src.getSize(),
                 src.getMemoryHandle(),
                 0, /* offset = 0 */
Z
zhangjinchao01 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
                 false /* useGpu = false */) {
  if (typeid(*this->memoryHandle_.get()) != typeid(CpuMemoryHandle)) {
    this->memoryHandle_ =
        std::make_shared<CpuMemoryHandle>(sizeof(T) * this->getSize());
    this->data_ = reinterpret_cast<T*>(this->memoryHandle_->getBuf());
  }
  src.copyTo(this);
}

template <class T>
T CpuVectorT<T>::getAbsSum() {
  const T* A = this->getData();
  size_t size = this->getSize();
  T sum = 0;
  for (size_t i = 0; i < size; i++) {
    sum += (A[i] > 0) ? A[i] : -A[i];
  }
  return sum;
}

// cannot use above version, due to precision issue of float
template <>
real CpuVectorT<real>::getAbsSum() {
  const real* A = this->getData();
  size_t size = this->getSize();
  double sum = 0;
  for (size_t i = 0; i < size; i++) {
    sum += (A[i] > 0) ? A[i] : -A[i];
  }
  return sum;
}

template <class T>
T CpuVectorT<T>::getSum() {
  const T* A = this->getData();
  size_t size = this->getSize();
  T sum = 0;
  for (size_t i = 0; i < size; i++) {
    sum += A[i];
  }
  return sum;
}

template <>
real CpuVectorT<real>::getSum() {
  const real* A = this->getData();
  size_t size = this->getSize();
  double sum = 0;
  for (size_t i = 0; i < size; i++) {
    sum += A[i];
  }
  return sum;
}

template <class T>
T CpuVectorT<T>::get(size_t pos) {
  return this->getData()[pos];
}

template <class T>
T CpuVectorT<T>::getMax() {
  const T* A = this->getData();
  size_t size = this->getSize();
  T res = A[0];
  for (size_t i = 1; i < size; i++) {
    if (res < A[i]) res = A[i];
  }
  return res;
}

template <class T>
T CpuVectorT<T>::getAbsMax() {
  const T* A = this->getData();
  size_t size = this->getSize();
  T res = std::abs(A[0]);
  for (size_t i = 1; i < size; i++) {
    if (res < std::abs(A[i])) res = std::abs(A[i]);
  }
  return res;
}

template <class T>
T CpuVectorT<T>::getMin() {
  const T* A = this->getData();
  size_t size = this->getSize();
  T res = A[0];
  for (size_t i = 1; i < size; i++) {
    if (res > A[i]) res = A[i];
  }
  return res;
}

template <class T>
void CpuVectorT<T>::isEqualTo(const VectorT<T>& b, const T& value) {
  size_t size = this->getSize();
  CHECK_EQ(b.getSize(), size);

  const T* B = b.getData();
  T* A = this->getData();
  for (size_t i = 0; i < size; i++) {
    A[i] = (B[i] == value);
  }
}

template <class T>
void CpuVectorT<T>::selectFrom(const VectorT<T>& src, const VectorT<int>& ids) {
  size_t size = this->getSize();
  CHECK_EQ(ids.getSize(), size);

  const int* indices = ids.getData();
  const T* B = src.getData();
  T* A = this->getData();
  for (size_t i = 0; i < size; i++) {
    int index = indices[i];
    CHECK_LT(index, (int)src.getSize());
    A[i] = B[index];
  }
}

static int getSignAndExponentOfFloat(float a) {
  uint32_t* pa = reinterpret_cast<uint32_t*>(&a);
  return *pa >> 23;
}

template <class T>
void CpuVectorT<T>::histogram(std::ostream& os, int type) {
  LOG(FATAL) << "Not implemented";
}

template <>
void CpuVectorT<real>::histogram(std::ostream& os, int type) {
  int counters[512];
  memset(counters, 0, sizeof(counters));
  int counterZero = 0;

  const real* A = this->getData();
  size_t size = this->getSize();
  for (size_t i = 0; i < size; i++) {
    if (A[i] == 0.0f) {
      ++counterZero;
    } else {
      ++counters[getSignAndExponentOfFloat(A[i])];
    }
  }

  int64_t sum = 0;
  float sizeNonZero = size - counterZero;
  os << "zero:" << counterZero;
  for (int i = 0; i < 256; i++) {
    int counter = counters[i];
    if (counter) {
      os << " 2^" << i - 127 << ":" << counter / sizeNonZero * 100 << "%";
      sum += counter * (i - 127);
    }
  }
  for (int i = 0; i < 256; i++) {
    int counter = counters[i + 256];
    if (counter) {
      os << " -2^" << i - 127 << ":" << counter / sizeNonZero * 100 << "%";
      sum += counter * (i - 127);
    }
  }
  os << ", nonzero_exponent_avg=" << sum / sizeNonZero;
}

template <class T>
void CpuVectorT<T>::zeroMem() {
  memset(this->getData(), 0, sizeof(T) * this->getSize());
}

template <class T>
void CpuVectorT<T>::reset(const T& value) {
  T* A = this->getData();
  size_t size = this->getSize();
  for (size_t i = 0; i < size; i++) {
    A[i] = value;
  }
}

template <class T>
void CpuVectorT<T>::fillSequence() {
  T* A = this->getData();
  size_t size = this->getSize();
  for (size_t i = 0; i < size; i++) {
    A[i] = i;
  }
}

template <class T>
void CpuVectorT<T>::copyFrom(const VectorT<T>& src) {
  src.copyTo(this);
}

template <class T>
void CpuVectorT<T>::copyFrom(const VectorT<T>& src, hl_stream_t stream) {
  if (typeid(src) == typeid(GpuVectorT<T>)) {
656 657 658 659
    hl_memcpy_async((void*)this->getData(),
                    (void*)src.getData(),
                    sizeof(T) * this->getSize(),
                    stream);
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
  } else {
    src.copyTo(this);
  }
}

template <class T>
void CpuVectorT<T>::copyFrom(const T* hostSrc, size_t size) {
  CHECK(hostSrc != NULL);
  CHECK_LE(size, this->size_);
  memcpy(this->data_, hostSrc, sizeof(T) * size);
}

template <class T>
673 674
void CpuVectorT<T>::copyFrom(const T* hostSrc,
                             size_t size,
Z
zhangjinchao01 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
                             hl_stream_t stream) {
  (void)stream;

  CHECK(hostSrc != NULL);
  CHECK_LE(size, this->size_);
  memcpy(this->data_, hostSrc, sizeof(T) * size);
}

template <class T>
void CpuVectorT<T>::copyTo(CpuVectorT<T>* dest) const {
  CHECK_EQ(this->getSize(), dest->getSize());
  memcpy(dest->getData(), this->getData(), sizeof(T) * this->getSize());
}

template <class T>
void CpuVectorT<T>::copyTo(GpuVectorT<T>* dest) const {
  CHECK_EQ(this->getSize(), dest->getSize());
692 693
  hl_memcpy_host2device((void*)dest->getData(),
                        (void*)this->getData(),
Z
zhangjinchao01 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
                        sizeof(T) * this->getSize());
}

template <>
void CpuVectorT<real>::print(std::ostream& os, size_t num) const {
  size_t w = size_ < num ? size_ : num;
  os << "[";
  for (size_t i = 0; i < w; ++i) {
    os << data_[i] << " ";
  }
  os << "]" << std::endl;
}

template <>
void CpuVectorT<int>::print(std::ostream& os, size_t num) const {
  size_t w = size_ < num ? size_ : num;
  os << "[";
  for (size_t i = 0; i < w; ++i) {
    os << (int)data_[i] << " ";
  }
  os << "]" << std::endl;
}

template <>
void CpuVectorT<real>::printOneElement(std::ostream& os, size_t idx) const {
  CHECK_LT(idx, size_);
  os << data_[idx] << ";";
}

template <>
void CpuVectorT<int>::printOneElement(std::ostream& os, size_t idx) const {
  CHECK_LT(idx, size_);
  os << (int)data_[idx] << ";";
}

template <class T>
void ParallelCpuVectorT<T>::parallelExec(ExecFunc func) {
  LOG(FATAL) << "Not implemented";
}

template <>
void ParallelCpuVectorT<real>::parallelExec(ExecFunc func) {
  pool_->exec([this, func](int tid, size_t numThreads) {
737 738
    auto interval = calcSplitArrayInterval(
        this->getSize(), (size_t)tid, numThreads, 8LU /*for avx*/);
Z
zhangjinchao01 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
    // setup sub bufs
    CpuVector subVec(0, nullptr);
    subVec.subVecFrom(*this, interval);
    func(subVec);
  });
}

template <class T>
void ParallelCpuVectorT<T>::exec(SyncThreadPool::JobFunc func) {
  LOG(FATAL) << "Not implemented";
}

template <>
void ParallelCpuVectorT<real>::exec(SyncThreadPool::JobFunc func) {
  pool_->exec(func);
}

template <class T>
Y
Yu Yang 已提交
757
CpuGpuVectorT<T>::CpuGpuVectorT(size_t size, bool useGpu) : sync_(nullptr) {
Z
zhangjinchao01 已提交
758 759 760 761 762 763 764 765 766 767
  if (!useGpu) {
    cpuVectorT_ = std::make_shared<CpuVectorT<T>>(size);
  } else {
    gpuVectorT_ = std::make_shared<GpuVectorT<T>>(size);
  }
  setSync(useGpu);
}

template <class T>
CpuGpuVectorT<T>::CpuGpuVectorT(const std::shared_ptr<VectorT<T>>& src)
768
    : sync_(nullptr) {
Z
zhangjinchao01 已提交
769 770 771 772 773 774 775 776 777 778 779
  bool useGpu = src->useGpu();
  if (useGpu) {
    gpuVectorT_ = src;
  } else {
    cpuVectorT_ = src;
  }
  setSync(useGpu);
}

template <class T>
CpuGpuVectorT<T>::CpuGpuVectorT(size_t size, T* data, bool useGpu)
780
    : sync_(nullptr) {
Z
zhangjinchao01 已提交
781 782 783 784 785 786 787 788 789 790
  if (!useGpu) {
    cpuVectorT_ = std::make_shared<CpuVectorT<T>>(size, data);
    setSync(DATA_AT_CPU);
  } else {
    gpuVectorT_ = std::make_shared<GpuVectorT<T>>(size, data);
    setSync(DATA_AT_GPU);
  }
}

template <class T>
791 792
std::shared_ptr<CpuGpuVectorT<T>> CpuGpuVectorT<T>::create(size_t size,
                                                           bool useGpu) {
Z
zhangjinchao01 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
  return std::make_shared<CpuGpuVectorT<T>>(size, useGpu);
}

template <class T>
void CpuGpuVectorT<T>::resize(size_t size, bool useGpu) {
  if (useGpu) {
    CHECK(gpuVectorT_) << "gpuVectorT_ is null";
    // If memoryHandle_ is nullptr,
    // the data may be owned by the caller when it was constructed.
    // It should not resize for this case.
    if (gpuVectorT_->getMemoryHandle()) {
      gpuVectorT_->resize(size);
    } else {
      CHECK_EQ(gpuVectorT_->getSize(), size);
    }
  } else {
    CHECK(cpuVectorT_) << "cpuVectorT_ is null";
    // If memoryHandle_ is nullptr,
    // the data may be owned by the caller when it was constructed.
    // It should not resize for this case.
    if (cpuVectorT_->getMemoryHandle()) {
      cpuVectorT_->resize(size);
    } else {
      CHECK_EQ(cpuVectorT_->getSize(), size);
    }
  }
  setSync(useGpu);
}

template <class T>
823 824 825
void CpuGpuVectorT<T>::resizeOrCreate(std::shared_ptr<CpuGpuVectorT<T>>& vec,
                                      size_t size,
                                      bool useGpu) {
Z
zhangjinchao01 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839
  if (vec) {
    vec->resize(size, useGpu);
  } else {
    vec = create(size, useGpu);
  }
}

template <class T>
void CpuGpuVectorT<T>::resizeOrCreate(size_t size, bool useGpu) {
  if (useGpu && (!gpuVectorT_)) {
    gpuVectorT_ = VectorT<T>::create(size, true);
  } else if ((!useGpu) && (!cpuVectorT_)) {
    cpuVectorT_ = VectorT<T>::create(size, false);
  } else {
840
    CHECK((useGpu && gpuVectorT_) || (!useGpu && cpuVectorT_));
Z
zhangjinchao01 已提交
841 842 843 844 845 846
    this->resize(size, useGpu);
  }
}

template <class T>
CpuGpuVectorT<T>::CpuGpuVectorT(CpuGpuVectorT<T>& src,
847 848 849
                                size_t offset,
                                size_t size)
    : sync_(nullptr) {
Z
zhangjinchao01 已提交
850 851 852 853 854 855 856 857 858 859
  CHECK_LE(offset + size, static_cast<size_t>(src.getSize()));
#ifndef PADDLE_ONLY_CPU
  SyncedFlag* flag = src.getSync();
  if (*flag == DATA_AT_CPU) {
    src.copyToGpu();  // will set synchronous data between CPU and GPU
  } else if (*flag == DATA_AT_GPU) {
    src.copyToCpu();  // will set synchronous data between CPU and GPU
  }
#endif
  auto cMemHandle = (src.getVector(false))->getMemoryHandle();
860 861
  cpuVectorT_ = std::make_shared<CpuVectorT<T>>(
      size, std::dynamic_pointer_cast<CpuMemoryHandle>(cMemHandle), offset);
Z
zhangjinchao01 已提交
862 863
#ifndef PADDLE_ONLY_CPU
  auto gMemHandle = (src.getVector(true))->getMemoryHandle();
864 865
  gpuVectorT_ = std::make_shared<GpuVectorT<T>>(
      size, std::dynamic_pointer_cast<GpuMemoryHandle>(gMemHandle), offset);
Z
zhangjinchao01 已提交
866 867 868 869 870 871
  src.setSync(SYNCED);
#endif
  setSync(src.getSync());
}

template <class T>
872 873 874
std::shared_ptr<const VectorT<T>> CpuGpuVectorT<T>::getVector(
    bool useGpu) const {
  auto* self = const_cast<CpuGpuVectorT<T>*>(this);
Z
zhangjinchao01 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
  if (useGpu) {
    self->copyToGpu();
    return std::const_pointer_cast<const VectorT<T>>(gpuVectorT_);
  } else {
    self->copyToCpu();
    return std::const_pointer_cast<const VectorT<T>>(cpuVectorT_);
  }
}

template <class T>
std::shared_ptr<VectorT<T>>& CpuGpuVectorT<T>::getMutableVector(bool useGpu) {
  setSync(useGpu);
  if (useGpu) {
    copyToGpu();
    return gpuVectorT_;
  } else {
    copyToCpu();
    return cpuVectorT_;
  }
}

template <class T>
const T* CpuGpuVectorT<T>::getData(bool useGpu) const {
  auto self = const_cast<CpuGpuVectorT<T>*>(this);
  if (useGpu) {
    self->copyToGpu();
    return gpuVectorT_->getData();
  } else {
    self->copyToCpu();
    return cpuVectorT_->getData();
  }
}

// Operation will change data and need to reset sync_ & syncFlag_.
#define MUTABLE_VECTOR_OP(OP, useGpu, args...) \
  do {                                         \
    if (useGpu) {                              \
      copyToGpu();                             \
913
      setSync(useGpu);                         \
Z
zhangjinchao01 已提交
914 915 916
      return gpuVectorT_->OP(args);            \
    } else {                                   \
      copyToCpu();                             \
917
      setSync(useGpu);                         \
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      return cpuVectorT_->OP(args);            \
    }                                          \
  } while (0)

template <class T>
T* CpuGpuVectorT<T>::getMutableData(bool useGpu) {
  MUTABLE_VECTOR_OP(getData, useGpu);
}

template <class T>
void CpuGpuVectorT<T>::zeroMem(bool useGpu) {
  MUTABLE_VECTOR_OP(zeroMem, useGpu);
}

template <class T>
void CpuGpuVectorT<T>::fillSequence(bool useGpu) {
  MUTABLE_VECTOR_OP(fillSequence, useGpu);
}

template <class T>
void CpuGpuVectorT<T>::setElement(size_t i, const T& value, bool useGpu) {
  MUTABLE_VECTOR_OP(setElement, useGpu, i, value);
}

template <class T>
T CpuGpuVectorT<T>::getElement(size_t i) const {
  switch (*this->getSync()) {
    case SYNCED:
    case DATA_AT_CPU:
      return cpuVectorT_->getElement(i);
      break;
    case DATA_AT_GPU:
      return gpuVectorT_->getElement(i);
      break;
    default:
      LOG(FATAL) << "Not support";
      break;
  }
}

template <class T>
void CpuGpuVectorT<T>::copyFrom(const VectorT<T>& src, hl_stream_t stream) {
  auto cVec = dynamic_cast<const CpuVectorT<T>*>(&src);
  auto gVec = dynamic_cast<const GpuVectorT<T>*>(&src);
  if (cVec) {
    copyToCpu(cVec->getData(), cVec->getSize(), stream);
  } else if (gVec) {
    copyToGpu(gVec->getData(), gVec->getSize(), stream);
  } else {
    LOG(FATAL) << "Invalid type of src";
  }
}

template <class T>
void CpuGpuVectorT<T>::copyFrom(const T* data, size_t size, bool useGpu) {
  if (useGpu) {
    copyToGpu(data, size);
  } else {
    copyToCpu(data, size);
  }
}

template <class T>
981 982 983 984
void CpuGpuVectorT<T>::copyFrom(const T* data,
                                size_t size,
                                hl_stream_t stream,
                                bool useGpu) {
Z
zhangjinchao01 已提交
985 986 987 988 989 990 991 992 993
  if (useGpu) {
    copyToGpu(data, size, stream);
  } else {
    copyToCpu(data, size, stream);
  }
}

template <class T>
void CpuGpuVectorT<T>::copyFrom(CpuGpuVectorT<T>& src,
994 995 996 997
                                size_t offset,
                                size_t size,
                                bool useGpu,
                                hl_stream_t stream) {
Z
zhangjinchao01 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  if (useGpu) {
    VectorT<T>::resizeOrCreate(gpuVectorT_, size, true);
    gpuVectorT_->copyFrom(src.getData(true) + offset, size, stream);
  } else {
    VectorT<T>::resizeOrCreate(cpuVectorT_, size, false);
    cpuVectorT_->copyFrom(src.getData(false) + offset, size, stream);
  }
  setSync(useGpu);
}

template <class T>
1009
void CpuGpuVectorT<T>::copyFrom(CpuGpuVectorT<T>& src, hl_stream_t stream) {
Z
zhangjinchao01 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
  switch (*src.getSync()) {
    case DATA_AT_CPU:
      copyFrom(*(src.getVector(false)), stream);
      break;
    case DATA_AT_GPU:
      copyFrom(*(src.getVector(true)), stream);
      break;
    case SYNCED:
      copyFrom(*(src.getVector(false)), stream);
      copyFrom(*(src.getVector(true)), stream);
      setSync(SYNCED);
      break;
    default:
      LOG(FATAL) << "Not support";
      break;
  }
}

template <class T>
void CpuGpuVectorT<T>::copyToCpu() {
  switch (*this->getSync()) {
    case DATA_AT_GPU:
      CHECK(gpuVectorT_);
      this->resizeOrCreate(gpuVectorT_->getSize(), false);
1034
      cpuVectorT_->copyFrom(*gpuVectorT_);
Z
zhangjinchao01 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
      setSync(SYNCED);
      break;
    case DATA_AT_CPU:
    case SYNCED:
      CHECK(cpuVectorT_);
      break;
    default:
      LOG(FATAL) << "Not support";
      break;
  }
}

template <class T>
void CpuGpuVectorT<T>::copyToGpu() {
  switch (*this->getSync()) {
    case DATA_AT_CPU:
      CHECK(cpuVectorT_);
      this->resizeOrCreate(cpuVectorT_->getSize(), true);
1053
      gpuVectorT_->copyFrom(*cpuVectorT_);
Z
zhangjinchao01 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
      setSync(SYNCED);
      break;
    case DATA_AT_GPU:
    case SYNCED:
      CHECK(gpuVectorT_);
      break;
    default:
      LOG(FATAL) << "Not support";
      break;
  }
}

template class VectorT<real>;
template class VectorT<int>;
template class CpuVectorT<real>;
template class CpuVectorT<int>;
template class GpuVectorT<real>;
template class GpuVectorT<int>;
template class CpuGpuVectorT<real>;
template class CpuGpuVectorT<int>;

}  // namespace paddle