allocator_facade.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/allocator.h"
S
sneaxiy 已提交
16
#include <gflags/gflags.h>
17
#include <map>
S
sneaxiy 已提交
18
#include <unordered_map>
19 20 21
#include <vector>
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
24
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/memory/allocation/conditional_allocator.h"
26
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
28
#include "paddle/fluid/memory/allocation/locked_allocator.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/memory/allocation/retry_allocator.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/memory/allocation/zero_size_allocator.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/platform/cpu_info.h"
32 33 34
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
35 36 37
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/gpu_info.h"
38 39
#endif

S
sneaxiy 已提交
40
DEFINE_int64(
S
sneaxiy 已提交
41 42 43 44
    gpu_allocator_retry_time, 0,
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

45 46 47 48
namespace paddle {
namespace memory {
namespace allocation {

Y
Yu Yang 已提交
49
// TODO(yy): Dirty code here. This class should be configurable in runtime.
Y
Yu Yang 已提交
50
class CPUManagedAllocator : public Allocator {
Y
Yu Yang 已提交
51
 public:
Y
Yu Yang 已提交
52
  CPUManagedAllocator() : normal_allocator_(new CPUAllocator()) {}
Y
Yu Yang 已提交
53

Y
Yu Yang 已提交
54
  bool IsAllocThreadSafe() const override { return true; }
Y
Yu Yang 已提交
55

Y
Yu Yang 已提交
56 57 58 59 60
 protected:
  Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
    return normal_allocator_->Allocate(size, attr).release();
  }

Y
Yu Yang 已提交
61
 private:
Y
Yu Yang 已提交
62
  std::shared_ptr<Allocator> normal_allocator_;
Y
Yu Yang 已提交
63 64
};

Y
Yu Yang 已提交
65
// TODO(yy): Dirty code here. This class should be configurable in runtime.
Y
Yu Yang 已提交
66
class ChunkedManagedAllocator : public Allocator {
67
 public:
S
sneaxiy 已提交
68 69 70 71
  explicit ChunkedManagedAllocator(std::unique_ptr<Allocator> system_allocator,
                                   size_t max_chunk_size, size_t capacity = 1,
                                   int64_t retry_time = -1)
      : max_chunk_size_(max_chunk_size), retry_time_(retry_time) {
Y
Yu Yang 已提交
72
    raw_allocator_ = std::move(system_allocator);
S
sneaxiy 已提交
73 74 75 76 77

    if (max_chunk_size_ == 0) {
      default_allocator_ = raw_allocator_;
    } else {
      if (capacity == 1) {
S
sneaxiy 已提交
78 79
        VLOG(10) << "Create BestFitAllocator with chunk_size "
                 << max_chunk_size_;
S
sneaxiy 已提交
80 81
        default_allocator_ = BestFitAllocatorCreator();
      } else {
S
sneaxiy 已提交
82 83
        VLOG(10) << "Create AutoIncrementAllocator with chunk_size "
                 << max_chunk_size_ << " and capacity " << capacity;
S
sneaxiy 已提交
84 85 86 87
        default_allocator_ = std::make_shared<AutoIncrementAllocator>(
            [this] { return std::move(BestFitAllocatorCreator()); }, capacity);
      }
    }
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99

    auto* cond_allocator = new ConditionalAllocator();
    cond_allocator
        ->AddAllocator(
            [this](size_t size, Attr attr) { return size < max_chunk_size_; },
            default_allocator_)
        .AddAllocator(
            [](size_t size, Attr attr) {
              return true;  // default case
            },
            raw_allocator_);
    default_allocator_.reset(cond_allocator);
Y
Yu Yang 已提交
100
  }
101

S
sneaxiy 已提交
102
  ~ChunkedManagedAllocator() {
103
    // Specify destruct order.
Y
Yu Yang 已提交
104 105 106 107 108
    default_allocator_.reset();
    chunks_.clear();
    raw_allocator_.reset();
  }

Y
Yu Yang 已提交
109
  std::shared_ptr<Allocator> BestFitAllocatorCreator() {
Y
Yu Yang 已提交
110 111
    chunks_.emplace_back(raw_allocator_->Allocate(max_chunk_size_));
    auto* allocation = chunks_.back().get();
S
sneaxiy 已提交
112 113 114
    std::unique_ptr<Allocator> unmanaged_allocator(new LockedAllocator(
        std::unique_ptr<Allocator>(new BestFitAllocator(allocation))));

S
sneaxiy 已提交
115
    if (retry_time_ <= 0) {
S
sneaxiy 已提交
116 117
      VLOG(10) << "Create NaiveManagedAllocator without retry";
      return std::make_shared<AlignedAllocator<64u>>(
Y
Yu Yang 已提交
118
          std::move(unmanaged_allocator));
S
sneaxiy 已提交
119
    } else {
S
sneaxiy 已提交
120 121
      VLOG(10) << "Create RetryAllocator with retry_time " << retry_time_
               << "ms";
Y
Yu Yang 已提交
122 123 124
      auto tmp = std::make_shared<RetryAllocator>(
          std::move(unmanaged_allocator), static_cast<size_t>(retry_time_));
      return std::make_shared<AlignedAllocator<64u>>(tmp);
S
sneaxiy 已提交
125
    }
126
  }
S
sneaxiy 已提交
127

Y
Yu Yang 已提交
128 129
  bool IsAllocThreadSafe() const override { return true; }

Y
Yu Yang 已提交
130 131 132 133 134
 protected:
  Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
    return default_allocator_->Allocate(size, attr).release();
  }

S
sneaxiy 已提交
135
 protected:
Y
Yu Yang 已提交
136
  size_t max_chunk_size_;
S
sneaxiy 已提交
137
  int64_t retry_time_;
Y
Yu Yang 已提交
138
  std::vector<AllocationPtr> chunks_;
Y
Yu Yang 已提交
139 140
  std::shared_ptr<Allocator> raw_allocator_;
  std::shared_ptr<Allocator> default_allocator_;
Y
Yu Yang 已提交
141
};
S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#ifdef PADDLE_WITH_CUDA

class CUDAManagedAllocator : public ChunkedManagedAllocator {
 public:
  explicit CUDAManagedAllocator(int dev_id)
      : ChunkedManagedAllocator(
            std::unique_ptr<Allocator>(
                new CUDAAllocator(platform::CUDAPlace(dev_id))),
            GetMaxChunkSize(dev_id), GetCapcity(dev_id), GetRetryTime()) {}

 private:
  static size_t GetMaxChunkSize(int dev_id) {
    platform::CUDADeviceGuard guard(dev_id);
    return platform::GpuMaxChunkSize();
  }

  static size_t GetCapcity(int dev_id) {
    platform::CUDADeviceGuard guard(dev_id);
    size_t available, total;
    platform::GpuMemoryUsage(&available, &total);
    size_t max_chunk_size = platform::GpuMaxChunkSize();
    return max_chunk_size == 0 ? 0 : available / max_chunk_size;
  }

  static int64_t GetRetryTime() { return FLAGS_gpu_allocator_retry_time; }
};

class CUDAPinnedManagedAllocator : public ChunkedManagedAllocator {
 public:
  CUDAPinnedManagedAllocator()
      : ChunkedManagedAllocator(
            std::unique_ptr<Allocator>(new CPUPinnedAllocator()),
            platform::CUDAPinnedMaxChunkSize(), GetCapacity(), -1) {
  }  // never retry

 private:
  static size_t GetCapacity() {
    size_t total = platform::CpuTotalPhysicalMemory();
    size_t max_chunk_size = platform::CUDAPinnedMaxChunkSize();
    return max_chunk_size == 0 ? 0 : total / max_chunk_size;
  }
};

Y
Refine  
Yu Yang 已提交
186
#endif
Y
Yu Yang 已提交
187 188 189

class AllocatorFacadePrivate {
 public:
Y
Yu Yang 已提交
190
  std::map<platform::Place, std::shared_ptr<Allocator>> allocators_;
Y
Yu Yang 已提交
191

Y
Refine  
Yu Yang 已提交
192
  ~AllocatorFacadePrivate() = default;
193 194

  AllocatorFacadePrivate() {
Y
Yu Yang 已提交
195 196 197 198 199 200 201 202
    if (GetAllocatorStrategy() == AllocatorStrategy::kLegacy) {
      InitLegacyAllocator();
    } else {
      InitCPUAllocator();
      InitCUDAAllocator();
      InitCUDAPinnedAllocator();
      WrapZeroSizeAllocator();
    }
203 204 205
  }

 private:
Y
Yu Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217
  void InitLegacyAllocator() {
    std::vector<platform::Place> places{platform::CPUPlace()};
#ifdef PADDLE_WITH_CUDA
    for (int dev_id = 0; dev_id < platform::GetCUDADeviceCount(); ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
#endif
    for (auto& p : places) {
      allocators_[p] = std::make_shared<LegacyAllocator>(p);
    }
  }

218
  void InitCPUAllocator() {
Y
Yu Yang 已提交
219
    allocators_[platform::CPUPlace()] = std::make_shared<CPUManagedAllocator>();
220 221 222 223
  }

  void InitCUDAAllocator() {
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
224 225
    int device_count = platform::GetCUDADeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
226
      allocators_[platform::CUDAPlace(dev_id)] =
Y
Yu Yang 已提交
227
          std::make_shared<CUDAManagedAllocator>(dev_id);
228 229 230
    }
#endif
  }
Y
Yu Yang 已提交
231

S
sneaxiy 已提交
232 233 234 235 236 237 238
  void InitCUDAPinnedAllocator() {
#ifdef PADDLE_WITH_CUDA
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CUDAPinnedManagedAllocator>();
#endif
  }

Y
Yu Yang 已提交
239 240 241 242 243 244
  void WrapZeroSizeAllocator() {
    for (auto& pair : allocators_) {
      pair.second =
          std::make_shared<ZeroSizeAllocator>(pair.second, pair.first);
    }
  }
245 246
};

Y
Refine  
Yu Yang 已提交
247
// Pimpl. Make interface clean.
248 249 250 251 252 253 254 255 256 257
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
AllocatorFacade::~AllocatorFacade() { delete m_; }

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, Allocator::Attr attr) {
Y
Yu Yang 已提交
258
  return std::shared_ptr<Allocation>(
Y
Yu Yang 已提交
259 260
      m_->allocators_.at(place)->Allocate(size, attr).release(),
      AllocationDeleter());
261 262
}

Y
Yu Yang 已提交
263 264
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     Allocator::Attr attr) {
S
sneaxiy 已提交
265
  return m_->allocators_.at(place)->Allocate(size, attr);
266 267 268 269 270
}

}  // namespace allocation
}  // namespace memory
}  // namespace paddle