preprocess.py 16.0 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
import numpy as np
import cv2
import copy


def decode_image(img_path):
    with open(img_path, 'rb') as f:
        im_read = f.read()
    data = np.frombuffer(im_read, dtype='uint8')
    im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
    im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    img_info = {
        "im_shape": np.array(
            im.shape[:2], dtype=np.float32),
        "scale_factor": np.array(
            [1., 1.], dtype=np.float32)
    }
    return im, img_info


class Resize(object):
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


class NormalizeImage(object):
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        is_channel_first (bool): if True: image shape is CHW, else: HWC
    """

    def __init__(self, mean, std, is_scale=True):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]

        if self.is_scale:
            im = im / 255.0
        im -= mean
        im /= std
        return im, im_info


class Permute(object):
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, ):
        super(Permute, self).__init__()

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.transpose((2, 0, 1)).copy()
        return im, im_info


class PadStride(object):
    """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
    Args:
        stride (bool): model with FPN need image shape % stride == 0
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


class LetterBoxResize(object):
    def __init__(self, target_size):
        """
        Resize image to target size, convert normalized xywh to pixel xyxy
        format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
        Args:
            target_size (int|list): image target size.
        """
        super(LetterBoxResize, self).__init__()
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
        # letterbox: resize a rectangular image to a padded rectangular
        shape = img.shape[:2]  # [height, width]
        ratio_h = float(height) / shape[0]
        ratio_w = float(width) / shape[1]
        ratio = min(ratio_h, ratio_w)
        new_shape = (round(shape[1] * ratio),
                     round(shape[0] * ratio))  # [width, height]
        padw = (width - new_shape[0]) / 2
        padh = (height - new_shape[1]) / 2
        top, bottom = round(padh - 0.1), round(padh + 0.1)
        left, right = round(padw - 0.1), round(padw + 0.1)

        img = cv2.resize(
            img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT,
            value=color)  # padded rectangular
        return img, ratio, padw, padh

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        height, width = self.target_size
        h, w = im.shape[:2]
        im, ratio, padw, padh = self.letterbox(im, height=height, width=width)

        new_shape = [round(h * ratio), round(w * ratio)]
        im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
        im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
        return im, im_info


class Pad(object):
    def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
        """
        Pad image to a specified size.
        Args:
            size (list[int]): image target size
            fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
        """
        super(Pad, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size
        self.fill_value = fill_value

    def __call__(self, im, im_info):
        im_h, im_w = im.shape[:2]
        h, w = self.size
        if h == im_h and w == im_w:
            im = im.astype(np.float32)
            return im, im_info

        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
        im = canvas
        return im, im_info


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian

    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)

    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         input_size,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ]): Size of the destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(output_size) == 2
    assert len(shift) == 2
    if not isinstance(input_size, (np.ndarray, list)):
        input_size = np.array([input_size, input_size], dtype=np.float32)
    scale_tmp = input_size

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


class WarpAffine(object):
    """Warp affine the image
    """

    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
                 shift=0.1):
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        return inp, im_info


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
# keypoint preprocess
def get_warp_matrix(theta, size_input, size_dst, size_target):
    """This code is based on
        https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py

        Calculate the transformation matrix under the constraint of unbiased.
    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].

    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = np.cos(theta) * scale_x
    matrix[0, 1] = -np.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (
        -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
        np.sin(theta) + 0.5 * size_target[0])
    matrix[1, 0] = np.sin(theta) * scale_y
    matrix[1, 1] = np.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (
        -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
        np.cos(theta) + 0.5 * size_target[1])
    return matrix


class TopDownEvalAffine(object):
    """apply affine transform to image and coords

    Args:
        trainsize (list): [w, h], the standard size used to train
        use_udp (bool): whether to use Unbiased Data Processing.
        records(dict): the dict contained the image and coords

    Returns:
        records (dict): contain the image and coords after tranformed

    """

    def __init__(self, trainsize, use_udp=False):
        self.trainsize = trainsize
        self.use_udp = use_udp

    def __call__(self, image, im_info):
        rot = 0
        imshape = im_info['im_shape'][::-1]
        center = im_info['center'] if 'center' in im_info else imshape / 2.
        scale = im_info['scale'] if 'scale' in im_info else imshape
        if self.use_udp:
            trans = get_warp_matrix(
                rot, center * 2.0,
                [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)
        else:
            trans = get_affine_transform(center, scale, rot, self.trainsize)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)

        return image, im_info


S
shangliang Xu 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
class Compose:
    def __init__(self, transforms):
        self.transforms = []
        for op_info in transforms:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            self.transforms.append(eval(op_type)(**new_op_info))

    def __call__(self, img_path):
        img, im_info = decode_image(img_path)
        for t in self.transforms:
            img, im_info = t(img, im_info)
        inputs = copy.deepcopy(im_info)
        inputs['image'] = img
        return inputs