sgd_op.h 2.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
D
dongzhihong 已提交
16 17
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
18
#include "paddle/framework/selected_rows.h"
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

Q
qijun 已提交
23 24 25 26 27 28 29 30
template <typename Place, typename T>
struct SparseSGDFunctor {
  void operator()(const platform::DeviceContext& ctx,
                  const framework::SelectedRows& input,
                  const framework::Tensor& learning_rate,
                  framework::Tensor* output);
};

Q
Qiao Longfei 已提交
31
template <typename Place, typename T>
Y
Yu Yang 已提交
32
class SGDOpKernel : public framework::OpKernel<T> {
33
 public:
D
dongzhihong 已提交
34
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
qijun 已提交
35 36 37
    auto* param = ctx.Input<framework::Tensor>("Param");
    auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
Qiao Longfei 已提交
38

Q
qijun 已提交
39 40 41 42
    auto* grad_var = ctx.InputVar("Grad");
    if (grad_var->IsType<framework::Tensor>()) {
      param_out->mutable_data<T>(ctx.GetPlace());
      auto* grad = ctx.Input<framework::Tensor>("Grad");
Q
Qiao Longfei 已提交
43

Q
qijun 已提交
44 45 46 47 48
      auto p = framework::EigenVector<T>::Flatten(*param);
      auto g = framework::EigenVector<T>::Flatten(*grad);
      auto o = framework::EigenVector<T>::Flatten(*param_out);
      auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
      auto place = ctx.GetEigenDevice<Place>();
L
liaogang 已提交
49

Q
qijun 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
      Eigen::DSizes<int, 1> grad_dsize(grad->numel());
      o.device(place) = p - lr.broadcast(grad_dsize) * g;
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
      // This manual optimization brings difficulty to track data dependency.
      // It's better to find a more elegant solution.
      PADDLE_ENFORCE_EQ(param, param_out);
      auto* grad = ctx.Input<framework::SelectedRows>("Grad");
      SparseSGDFunctor<Place, T> functor;
      functor(ctx.device_context(), *grad, *learning_rate, param_out);
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
Q
Qiao Longfei 已提交
63 64 65 66
  }
};
}  // namespace operators
}  // namespace paddle