keypoint_detector.cc 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/keypoint_detector.h"

using namespace paddle_infer;

namespace PaddleDetection {

// Load Model and create model predictor
void KeyPointDetector::LoadModel(const std::string& model_dir,
                                 const int batch_size,
                                 const std::string& run_mode) {
  paddle_infer::Config config;
  std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
  std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
  config.SetModel(prog_file, params_file);
  if (this->device_ == "GPU") {
    config.EnableUseGpu(200, this->gpu_id_);
    config.SwitchIrOptim(true);
    // use tensorrt
36
    if (run_mode != "paddle") {
37 38 39 40 41 42 43 44 45
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (run_mode == "trt_fp32") {
        precision = paddle_infer::Config::Precision::kFloat32;
      } else if (run_mode == "trt_fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      } else if (run_mode == "trt_int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } else {
        printf(
46 47
            "run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or "
            "'trt_int8'");
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
      }
      // set tensorrt
      config.EnableTensorRtEngine(1 << 30,
                                  batch_size,
                                  this->min_subgraph_size_,
                                  precision,
                                  false,
                                  this->trt_calib_mode_);

      // set use dynamic shape
      if (this->use_dynamic_shape_) {
        // set DynamicShsape for image tensor
        const std::vector<int> min_input_shape = {
            1, 3, this->trt_min_shape_, this->trt_min_shape_};
        const std::vector<int> max_input_shape = {
            1, 3, this->trt_max_shape_, this->trt_max_shape_};
        const std::vector<int> opt_input_shape = {
            1, 3, this->trt_opt_shape_, this->trt_opt_shape_};
        const std::map<std::string, std::vector<int>> map_min_input_shape = {
            {"image", min_input_shape}};
        const std::map<std::string, std::vector<int>> map_max_input_shape = {
            {"image", max_input_shape}};
        const std::map<std::string, std::vector<int>> map_opt_input_shape = {
            {"image", opt_input_shape}};

        config.SetTRTDynamicShapeInfo(
            map_min_input_shape, map_max_input_shape, map_opt_input_shape);
        std::cout << "TensorRT dynamic shape enabled" << std::endl;
      }
    }

  } else if (this->device_ == "XPU") {
    config.EnableXpu(10 * 1024 * 1024);
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchIrOptim(true);
  config.DisableGlogInfo();
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePredictor(config));
}

C
chenxujun 已提交
98
// Visualization MaskDetector results
99 100 101 102
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap) {
  const int edge[][2] = {{0, 1},
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                         {0, 2},
                         {1, 3},
                         {2, 4},
                         {3, 5},
                         {4, 6},
                         {5, 7},
                         {6, 8},
                         {7, 9},
                         {8, 10},
                         {5, 11},
                         {6, 12},
                         {11, 13},
                         {12, 14},
                         {13, 15},
                         {14, 16},
                         {11, 12}};
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  cv::Mat vis_img = img.clone();
  for (int batchid = 0; batchid < results.size(); batchid++) {
    for (int i = 0; i < results[batchid].num_joints; i++) {
      if (results[batchid].keypoints[i * 3] > 0.5) {
        int x_coord = int(results[batchid].keypoints[i * 3 + 1]);
        int y_coord = int(results[batchid].keypoints[i * 3 + 2]);
        cv::circle(vis_img,
                   cv::Point2d(x_coord, y_coord),
                   1,
                   cv::Scalar(0, 0, 255),
                   2);
      }
    }
    for (int i = 0; i < results[batchid].num_joints; i++) {
      int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]);
      int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]);
      int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]);
      int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]);
      cv::line(vis_img,
               cv::Point2d(x_start, y_start),
               cv::Point2d(x_end, y_end),
               colormap[i],
               1);
    }
  }
  return vis_img;
}

void KeyPointDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void KeyPointDetector::Postprocess(std::vector<float>& output,
                                   std::vector<int> output_shape,
                                   std::vector<int64_t>& idxout,
                                   std::vector<int> idx_shape,
                                   std::vector<KeyPointResult>* result,
                                   std::vector<std::vector<float>>& center_bs,
                                   std::vector<std::vector<float>>& scale_bs) {
  std::vector<float> preds(output_shape[1] * 3, 0);

  for (int batchid = 0; batchid < output_shape[0]; batchid++) {
    get_final_preds(output,
                    output_shape,
                    idxout,
                    idx_shape,
                    center_bs[batchid],
                    scale_bs[batchid],
                    preds,
                    batchid,
                    this->use_dark);
    KeyPointResult result_item;
    result_item.num_joints = output_shape[1];
    result_item.keypoints.clear();
    for (int i = 0; i < output_shape[1]; i++) {
      result_item.keypoints.emplace_back(preds[i * 3]);
      result_item.keypoints.emplace_back(preds[i * 3 + 1]);
      result_item.keypoints.emplace_back(preds[i * 3 + 2]);
    }
    result->push_back(result_item);
  }
}

void KeyPointDetector::Predict(const std::vector<cv::Mat> imgs,
                               std::vector<std::vector<float>>& center_bs,
                               std::vector<std::vector<float>>& scale_bs,
                               const double threshold,
                               const int warmup,
                               const int repeats,
                               std::vector<KeyPointResult>* result,
                               std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;
  std::vector<float> im_shape_all(batch_size * 2);
  std::vector<float> scale_factor_all(batch_size * 2);

  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);
    im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
    im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];

    scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
    scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }

  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputHandle(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Reshape({batch_size, 3, rh, rw});
      in_tensor->CopyFromCpu(in_data_all.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(im_shape_all.data());
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({batch_size, 2});
      in_tensor->CopyFromCpu(scale_factor_all.data());
    }
  }

  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<int> output_shape, idx_shape;
  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data());

    auto idx_tensor = predictor_->GetOutputHandle(output_names[1]);
    idx_shape = idx_tensor->shape();
    // Calculate output length
    output_size = 1;
    for (int j = 0; j < idx_shape.size(); ++j) {
      output_size *= idx_shape[j];
    }
    idx_data_.resize(output_size);
    idx_tensor->CopyToCpu(idx_data_.data());
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data());

    auto idx_tensor = predictor_->GetOutputHandle(output_names[1]);
    idx_shape = idx_tensor->shape();
    // Calculate output length
    output_size = 1;
    for (int j = 0; j < idx_shape.size(); ++j) {
      output_size *= idx_shape[j];
    }
    idx_data_.resize(output_size);
    idx_tensor->CopyToCpu(idx_data_.data());
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Postprocessing result
  Postprocess(output_data_,
              output_shape,
              idx_data_,
              idx_shape,
              result,
              center_bs,
              scale_bs);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

}  // namespace PaddleDetection