train.py 3.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
import numpy as np

import paddle
from paddle.distributed import ParallelEnv

from ppdet.core.workspace import load_config, merge_config, create
K
Kaipeng Deng 已提交
35 36
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.engine import Trainer, init_parallel_env, set_random_seed
Q
qingqing01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

import ppdet.utils.cli as cli
import ppdet.utils.check as check
from ppdet.utils.logger import setup_logger
logger = setup_logger('train')


def parse_args():
    parser = cli.ArgsParser()
    parser.add_argument(
        "--weight_type",
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
68
        "--slim_config",
Q
qingqing01 已提交
69 70
        default=None,
        type=str,
71
        help="Configuration file of slim method.")
Q
qingqing01 已提交
72 73 74 75 76 77 78 79 80 81 82 83
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")
    args = parser.parse_args()
    return args


K
Kaipeng Deng 已提交
84 85 86
def run(FLAGS, cfg):
    # init parallel environment if nranks > 1
    init_parallel_env()
Q
qingqing01 已提交
87 88

    if FLAGS.enable_ce:
K
Kaipeng Deng 已提交
89 90 91 92 93 94
        set_random_seed(0)

    # build trainer
    trainer = Trainer(cfg, mode='train')

    # load weights
95 96
    if not FLAGS.slim_config:
        trainer.load_weights(cfg.pretrain_weights, FLAGS.weight_type)
K
Kaipeng Deng 已提交
97 98 99

    # training
    trainer.train()
Q
qingqing01 已提交
100 101 102 103 104 105 106


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
107 108 109 110 111
    if FLAGS.slim_config:
        slim_cfg = load_config(FLAGS.slim_config)
        merge_config(slim_cfg)
        if 'weight_type' not in cfg:
            cfg.weight_type = FLAGS.weight_type
Q
qingqing01 已提交
112 113 114 115 116 117 118
    check.check_config(cfg)
    check.check_gpu(cfg.use_gpu)
    check.check_version()

    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)

K
Kaipeng Deng 已提交
119
    run(FLAGS, cfg)
Q
qingqing01 已提交
120 121 122 123


if __name__ == "__main__":
    main()