yolov3_r50vd_dcn_obj365_pretrained_coco.yml 1.4 KB
Newer Older
W
wangguanzhong 已提交
1 2
architecture: YOLOv3
use_gpu: true
Y
Yuan Gao 已提交
3
max_iters: 85000
W
wangguanzhong 已提交
4 5 6 7
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
Y
Yuan Gao 已提交
8 9
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar
weights: output/yolov3_r50vd_dcn_db_obj365_pretrained_coco/model_final
W
wangguanzhong 已提交
10
num_classes: 80
Y
Yuan Gao 已提交
11
use_fine_grained_loss: true
W
wangguanzhong 已提交
12 13 14 15

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head
Y
Yuan Gao 已提交
16
  use_fine_grained_loss: true
W
wangguanzhong 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 50
  feature_maps: [3, 4, 5]
  variant: d
  dcn_v2_stages: [5]

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
K
Kaipeng Deng 已提交
34
  yolo_loss: YOLOv3Loss
W
wangguanzhong 已提交
35 36 37 38 39 40 41 42
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

K
Kaipeng Deng 已提交
43 44 45
YOLOv3Loss:
  ignore_thresh: 0.7
  label_smooth: false
Y
Yuan Gao 已提交
46
  use_fine_grained_loss: true
K
Kaipeng Deng 已提交
47

W
wangguanzhong 已提交
48 49 50 51 52 53
LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
Y
Yuan Gao 已提交
54 55
    - 55000
    - 75000
W
wangguanzhong 已提交
56 57 58 59 60 61 62 63 64 65 66 67
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

Y
Yuan Gao 已提交
68
_READER_: 'yolov3_enhance_reader.yml'