cl_test.cc 5.4 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
ZhenWang 已提交
15
#include <gflags/gflags.h>
Z
Zhen Wang 已提交
16 17
#include <glog/logging.h>
#include <gtest/gtest.h>
Z
ZhenWang 已提交
18 19 20 21 22
#include <memory>
#include <random>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/opencl/cl_caller.h"
Z
Zhen Wang 已提交
23 24
#include "paddle/fluid/lite/opencl/cl_context.h"
#include "paddle/fluid/lite/opencl/cl_engine.h"
Z
ZhenWang 已提交
25 26 27 28
#include "paddle/fluid/lite/opencl/cl_helper.h"
#include "paddle/fluid/lite/opencl/cl_image.h"

DEFINE_string(cl_path, "/data/local/tmp/opencl", "The OpenCL kernels path.");
Z
Zhen Wang 已提交
29 30 31 32 33 34 35

namespace paddle {
namespace lite {

TEST(cl_test, engine_test) {
  auto* engine = CLEngine::Global();
  CHECK(engine->IsInitSuccess());
Z
ZhenWang 已提交
36
  engine->set_cl_path(FLAGS_cl_path);
Z
Zhen Wang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49
  engine->platform();
  engine->device();
  engine->command_queue();
  auto& context = engine->context();
  auto program = engine->CreateProgram(
      context, engine->cl_path() + "/cl_kernel/" + "elementwise_add_kernel.cl");
  auto event = engine->CreateEvent(context);
  CHECK(engine->BuildProgram(program.get()));
}

TEST(cl_test, context_test) {
  auto* engine = CLEngine::Global();
  CHECK(engine->IsInitSuccess());
Z
ZhenWang 已提交
50
  engine->set_cl_path(FLAGS_cl_path);
Z
Zhen Wang 已提交
51
  CLContext context;
Z
ZhenWang 已提交
52
  context.GetKernel("pool_max", "pool_kernel.cl", "");
Z
Zhen Wang 已提交
53 54 55
  context.GetKernel("elementwise_add", "elementwise_add_kernel.cl", "");
  context.GetKernel("elementwise_add", "elementwise_add_kernel.cl", "");
}
Z
ZhenWang 已提交
56 57 58 59 60 61 62 63 64 65 66 67

TEST(cl_test, kernel_test) {
  auto* engine = CLEngine::Global();
  CHECK(engine->IsInitSuccess());
  engine->set_cl_path(FLAGS_cl_path);
  std::unique_ptr<CLContext> context(new CLContext);
  // std::unique_ptr<CLHelper> helper(new CLHelper(context.get()));
  std::unique_ptr<CLHelper> helper(new CLHelper);
  helper->set_context(context.get());
  helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl");
  helper->AddKernel("pool_max", "pool_kernel.cl");
  helper->AddKernel("elementwise_add", "elementwise_add_kernel.cl");
C
Chunwei 已提交
68
  auto kernel = helper->GetKernel(2);
Z
ZhenWang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  std::unique_ptr<float[]> in_data(new float[1024 * 512]);
  for (int i = 0; i < 1024 * 512; i++) {
    in_data[i] = 1.f;
  }
  const DDim in_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  CLImage in_image;
  in_image.set_tensor_data(in_data.get(), in_dim);
  in_image.InitNormalCLImage(helper->OpenCLContext());
  LOG(INFO) << in_image;

  std::unique_ptr<float[]> bias_data(new float[1024 * 512]);
  for (int i = 0; i < 1024 * 512; i++) {
    bias_data[i] = 2.f;
  }
  const DDim bias_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  CLImage bias_image;
  bias_image.set_tensor_data(bias_data.get(), bias_dim);
  bias_image.InitNormalCLImage(helper->OpenCLContext());
  LOG(INFO) << bias_image;

  CLImage out_image;
  const DDim out_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  out_image.InitEmptyImage(helper->OpenCLContext(), out_dim);
  LOG(INFO) << out_image;

  cl_int status;
  status = kernel.setArg(0, *in_image.cl_image());
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(1, *bias_image.cl_image());
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(2, *out_image.cl_image());
  CL_CHECK_ERRORS(status);

  // auto global_work_size = helper->DefaultWorkSize(out_image);
  size_t width = in_image.ImageWidth();
  size_t height = in_image.ImageHeight();
  auto global_work_size = cl::NDRange{width, height};
  cl::Event event;
  status = helper->OpenCLCommandQueue().enqueueNDRangeKernel(
      kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, &event);
  CL_CHECK_ERRORS(status);

  double start_nanos = event.getProfilingInfo<CL_PROFILING_COMMAND_START>();
  double stop_nanos = event.getProfilingInfo<CL_PROFILING_COMMAND_END>();
  double elapsed_micros = (stop_nanos - start_nanos) / 1000.0;
  LOG(INFO) << "Kernel Run Cost Time: " << elapsed_micros << " us.";
  LOG(INFO) << out_image;
}

TEST(cl_test, elementwise_add_test) {
  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-5, 5);

  const DDim in_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  std::unique_ptr<float[]> in_data(new float[1024 * 512]);
  for (int i = 0; i < 1024 * 512; i++) {
    in_data[i] = dist(engine);
  }

  const DDim bias_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  std::unique_ptr<float[]> bias_data(new float[1024 * 512]);
  for (int i = 0; i < 1024 * 512; i++) {
    bias_data[i] = dist(engine);
  }

  const DDim out_dim = DDim(std::vector<DDim::value_type>{1024, 512});
  std::unique_ptr<float[]> out(new float[1024 * 512]);

  bool status = InitOpenCLEngine(FLAGS_cl_path);
  CHECK(status) << "Fail to initialize OpenCL engine.";
  CLContext context;

  elementwise_add(&context, in_data.get(), in_dim, bias_data.get(), bias_dim,
                  out.get(), out_dim);

  int stride = 1024 * 512 / 20;
  for (int i = 0; i < 1024 * 512; i += stride) {
    std::cout << out[i] << " ";
  }

  std::cout << std::endl;
}

Z
Zhen Wang 已提交
153 154
}  // namespace lite
}  // namespace paddle