optimizer.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import math
20 21 22 23 24 25
import logging

from paddle import fluid

import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
26 27
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.layers.ops import cos
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

logger = logging.getLogger(__name__)


@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float): decay factor
        milestones (list): steps at which to decay learning rate
    """

W
wangguanzhong 已提交
46
    def __init__(self, gamma=0.1, milestones=[60000, 80000], values=None):
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        super(PiecewiseDecay, self).__init__()
        self.gamma = gamma
        self.milestones = milestones
        self.values = values

    def __call__(self, base_lr=None, learning_rate=None):
        if self.values is not None:
            return fluid.layers.piecewise_decay(self.milestones, self.values)
        assert base_lr is not None, "either base LR or values should be provided"
        values = [base_lr]
        lr = base_lr
        for _ in self.milestones:
            lr *= self.gamma
            values.append(lr)
        return fluid.layers.piecewise_decay(self.milestones, values)


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_iters (float): max iterations for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iter is much larger than the warmup iter
    """

    def __init__(self, max_iters=180000):
        self.max_iters = max_iters

    def __call__(self, base_lr=None, learning_rate=None):
        assert base_lr is not None, "either base LR or values should be provided"
        lr = fluid.layers.cosine_decay(base_lr, 1, self.max_iters)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


@serializable
class CosineDecayWithSkip(object):
    """
    Cosine decay, with explicit support for warm up

    Args:
        total_steps (int): total steps over which to apply the decay
        skip_steps (int): skip some steps at the beginning, e.g., warm up
    """

    def __init__(self, total_steps, skip_steps=None):
        super(CosineDecayWithSkip, self).__init__()
        assert (not skip_steps or skip_steps > 0), \
            "skip steps must be greater than zero"
        assert total_steps > 0, "total step must be greater than zero"
        assert (not skip_steps or skip_steps < total_steps), \
            "skip steps must be smaller than total steps"
        self.total_steps = total_steps
        self.skip_steps = skip_steps

    def __call__(self, base_lr=None, learning_rate=None):
        steps = _decay_step_counter()
        total = self.total_steps
        if self.skip_steps is not None:
            total -= self.skip_steps

        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=base_lr,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        def decay():
            cos_lr = base_lr * .5 * (cos(steps * (math.pi / total)) + 1)
            fluid.layers.tensor.assign(input=cos_lr, output=lr)

        if self.skip_steps is None:
            decay()
        else:
            skipped = steps >= self.skip_steps
            fluid.layers.cond(skipped, decay)
125 126 127
        return lr


128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

    def __call__(self, base_lr, learning_rate):
        start_lr = base_lr * self.start_factor

        return fluid.layers.linear_lr_warmup(
            learning_rate=learning_rate,
            warmup_steps=self.steps,
            start_lr=start_lr,
            end_lr=base_lr)


@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self):
        lr = None
        for sched in self.schedulers:
            lr = sched(self.base_lr, lr)
        return lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles

    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
190
                 clip_grad_by_norm=None,
191 192 193 194
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
195
        self.clip_grad_by_norm = clip_grad_by_norm
196 197 198 199
        self.regularizer = regularizer
        self.optimizer = optimizer

    def __call__(self, learning_rate):
W
wangguanzhong 已提交
200 201 202 203 204 205
        if self.regularizer:
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None
206 207 208 209 210 211 212
        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
        op = getattr(optimizer, optim_type)
        return op(learning_rate=learning_rate,
                  regularization=regularization,
                  **optim_args)