train_multi_machine.py 13.6 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

import time
import numpy as np
import random
import datetime
import six
from collections import deque
from paddle.fluid import profiler

from paddle import fluid
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.optimizer import ExponentialMovingAverage

from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader

from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config
import ppdet.utils.checkpoint as checkpoint

from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy  # new line 1
from paddle.fluid.incubate.fleet.base import role_maker  # new line 2

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)  # new line 3
    fleet.init(role)  # new line 4
    env = os.environ

    num_trainers = int(env.get('PADDLE_TRAINERS_NUM', 0))
    assert num_trainers != 0, "multi-machine training process must be started using distributed.launch..."
    trainer_id = int(env.get("PADDLE_TRAINER_ID", 0))

    # set different seeds for different trainers
    random.seed(trainer_id)
    np.random.seed(trainer_id)

    if FLAGS.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    save_only = getattr(cfg, 'save_prediction_only', False)
    if save_only:
        raise NotImplementedError('The config file only support prediction,'
                                  ' training stage is not implemented now')
    main_arch = cfg.architecture

    assert cfg.use_gpu == True, "GPU must be supported for multi-machine training..."
    devices_num = fluid.core.get_cuda_device_count()

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if FLAGS.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)

                dist_strategy = DistributedStrategy()
                sync_bn = getattr(model.backbone, 'norm_type',
                                  None) == 'sync_bn'
                dist_strategy.sync_batch_norm = sync_bn
                dist_strategy.nccl_comm_num = 1
                exec_strategy = fluid.ExecutionStrategy()
                exec_strategy.num_threads = 3
                exec_strategy.num_iteration_per_drop_scope = 30
                dist_strategy.exec_strategy = exec_strategy
                dist_strategy.fuse_all_reduce_ops = True
                optimizer = fleet.distributed_optimizer(
                    optimizer, strategy=dist_strategy)  # new line 5

                optimizer.minimize(loss)

                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

            if 'use_ema' in cfg and cfg['use_ema']:
                global_steps = _decay_step_counter()
                ema = ExponentialMovingAverage(
                    cfg['ema_decay'], thres_steps=global_steps)
                ema.update()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader, devices_num=1)
S
still-wait 已提交
165 166
        # When iterable mode, set set_sample_list_generator(eval_reader, place)
        eval_loader.set_sample_list_generator(eval_reader)
L
littletomatodonkey 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    exe.run(startup_prog)
    compiled_train_prog = fleet.main_program

    if FLAGS.eval:
        compiled_eval_prog = fluid.CompiledProgram(eval_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn and not ignore_params:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_params(
            exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params)

    train_reader = create_reader(
        cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num,
        cfg,
        devices_num=devices_num)
S
still-wait 已提交
204 205
    # When iterable mode, set set_sample_list_generator(train_reader, place)
    train_loader.set_sample_list_generator(train_reader)
L
littletomatodonkey 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use VisualDL to log data
    if FLAGS.use_vdl:
        assert six.PY3, "VisualDL requires Python >= 3.5"
        from visualdl import LogWriter
        vdl_writer = LogWriter(FLAGS.vdl_log_dir)
        vdl_loss_step = 0
        vdl_mAP_step = 0

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use vdl-paddle to log loss
        if FLAGS.use_vdl:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step)
                vdl_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and trainer_id == 0:
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        # NOTE : profiler tools, used for benchmark
        if FLAGS.is_profiler and it == 5:
            profiler.start_profiler("All")
        elif FLAGS.is_profiler and it == 10:
            profiler.stop_profiler("total", FLAGS.profiler_path)
            return


        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and trainer_id == 0:
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.apply_program)
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                resolution = None
                if 'Mask' in cfg.architecture:
                    resolution = model.mask_head.resolution
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg,
                    resolution=resolution)
                box_ap_stats = eval_results(
                    results, cfg.metric, cfg.num_classes, resolution,
                    is_bbox_normalized, FLAGS.output_eval, map_type,
                    cfg['EvalReader']['dataset'])

                # use vdl_paddle to log mAP
                if FLAGS.use_vdl:
                    vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step)
                    vdl_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.restore_program)

    train_loader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_vdl",
        type=bool,
        default=False,
        help="whether to record the data to VisualDL.")
    parser.add_argument(
        '--vdl_log_dir',
        type=str,
        default="vdl_log_dir/scalar",
        help='VisualDL logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")

    #NOTE:args for profiler tools, used for benchmark
    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')
    parser.add_argument(
        '--profiler_path',
        type=str,
        default="./detection.profiler",
        help='The profiler output file path. (used for benchmark)')
    FLAGS = parser.parse_args()
    main()