distill_pruned_model.py 15.0 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
19 20 21 22 23 24 25
import os, sys

# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

K
Kaipeng Deng 已提交
26 27 28 29 30 31 32 33 34 35 36 37
import numpy as np
from collections import OrderedDict
from paddleslim.dist.single_distiller import merge, l2_loss
from paddleslim.prune import Pruner
from paddleslim.analysis import flops

from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
from ppdet.utils.eval_utils import parse_fetches, eval_results, eval_run
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
38
from ppdet.utils.check import check_gpu, check_version, check_config
K
Kaipeng Deng 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def split_distill(split_output_names, weight):
    """
    Add fine grained distillation losses.
    Each loss is composed by distill_reg_loss, distill_cls_loss and
    distill_obj_loss
    """
    student_var = []
    for name in split_output_names:
        student_var.append(fluid.default_main_program().global_block().var(
            name))
    s_x0, s_y0, s_w0, s_h0, s_obj0, s_cls0 = student_var[0:6]
    s_x1, s_y1, s_w1, s_h1, s_obj1, s_cls1 = student_var[6:12]
    s_x2, s_y2, s_w2, s_h2, s_obj2, s_cls2 = student_var[12:18]
    teacher_var = []
    for name in split_output_names:
        teacher_var.append(fluid.default_main_program().global_block().var(
            'teacher_' + name))
    t_x0, t_y0, t_w0, t_h0, t_obj0, t_cls0 = teacher_var[0:6]
    t_x1, t_y1, t_w1, t_h1, t_obj1, t_cls1 = teacher_var[6:12]
    t_x2, t_y2, t_w2, t_h2, t_obj2, t_cls2 = teacher_var[12:18]

    def obj_weighted_reg(sx, sy, sw, sh, tx, ty, tw, th, tobj):
        loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
            sx, fluid.layers.sigmoid(tx))
        loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
            sy, fluid.layers.sigmoid(ty))
        loss_w = fluid.layers.abs(sw - tw)
        loss_h = fluid.layers.abs(sh - th)
        loss = fluid.layers.sum([loss_x, loss_y, loss_w, loss_h])
        weighted_loss = fluid.layers.reduce_mean(loss *
                                                 fluid.layers.sigmoid(tobj))
        return weighted_loss

    def obj_weighted_cls(scls, tcls, tobj):
        loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            scls, fluid.layers.sigmoid(tcls))
        weighted_loss = fluid.layers.reduce_mean(
            fluid.layers.elementwise_mul(
                loss, fluid.layers.sigmoid(tobj), axis=0))
        return weighted_loss

    def obj_loss(sobj, tobj):
        obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True
        loss = fluid.layers.reduce_mean(
            fluid.layers.sigmoid_cross_entropy_with_logits(sobj, obj_mask))
        return loss

    distill_reg_loss0 = obj_weighted_reg(s_x0, s_y0, s_w0, s_h0, t_x0, t_y0,
                                         t_w0, t_h0, t_obj0)
    distill_reg_loss1 = obj_weighted_reg(s_x1, s_y1, s_w1, s_h1, t_x1, t_y1,
                                         t_w1, t_h1, t_obj1)
    distill_reg_loss2 = obj_weighted_reg(s_x2, s_y2, s_w2, s_h2, t_x2, t_y2,
                                         t_w2, t_h2, t_obj2)
    distill_reg_loss = fluid.layers.sum(
        [distill_reg_loss0, distill_reg_loss1, distill_reg_loss2])

    distill_cls_loss0 = obj_weighted_cls(s_cls0, t_cls0, t_obj0)
    distill_cls_loss1 = obj_weighted_cls(s_cls1, t_cls1, t_obj1)
    distill_cls_loss2 = obj_weighted_cls(s_cls2, t_cls2, t_obj2)
    distill_cls_loss = fluid.layers.sum(
        [distill_cls_loss0, distill_cls_loss1, distill_cls_loss2])

    distill_obj_loss0 = obj_loss(s_obj0, t_obj0)
    distill_obj_loss1 = obj_loss(s_obj1, t_obj1)
    distill_obj_loss2 = obj_loss(s_obj2, t_obj2)
    distill_obj_loss = fluid.layers.sum(
        [distill_obj_loss0, distill_obj_loss1, distill_obj_loss2])
    loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss) * weight
    return loss


def main():
    env = os.environ
    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
123
    check_config(cfg)
K
Kaipeng Deng 已提交
124 125
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
126
    check_version()
K
Kaipeng Deng 已提交
127

128 129
    main_arch = cfg.architecture

K
Kaipeng Deng 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    inputs_def = cfg['TrainReader']['inputs_def']
    train_feed_vars, train_loader = model.build_inputs(**inputs_def)
    train_fetches = model.train(train_feed_vars)
    loss = train_fetches['loss']

    start_iter = 0
    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
S
still-wait 已提交
152 153
    # When iterable mode, set set_sample_list_generator(train_reader, place)
    train_loader.set_sample_list_generator(train_reader)
K
Kaipeng Deng 已提交
154 155 156 157 158 159 160 161 162 163 164

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, fluid.default_startup_program()):
        with fluid.unique_name.guard():
            model = create(main_arch)
            inputs_def = cfg['EvalReader']['inputs_def']
            test_feed_vars, eval_loader = model.build_inputs(**inputs_def)
            fetches = model.eval(test_feed_vars)
    eval_prog = eval_prog.clone(True)

    eval_reader = create_reader(cfg.EvalReader)
S
still-wait 已提交
165 166
    # When iterable mode, set set_sample_list_generator(eval_reader, place)
    eval_loader.set_sample_list_generator(eval_reader)
K
Kaipeng Deng 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    teacher_cfg = load_config(FLAGS.teacher_config)
    merge_config(FLAGS.opt)
    teacher_arch = teacher_cfg.architecture
    teacher_program = fluid.Program()
    teacher_startup_program = fluid.Program()

    with fluid.program_guard(teacher_program, teacher_startup_program):
        with fluid.unique_name.guard():
            teacher_feed_vars = OrderedDict()
            for name, var in train_feed_vars.items():
                teacher_feed_vars[name] = teacher_program.global_block(
                )._clone_variable(
                    var, force_persistable=False)
            model = create(teacher_arch)
            train_fetches = model.train(teacher_feed_vars)
            teacher_loss = train_fetches['loss']

    exe.run(teacher_startup_program)
    assert FLAGS.teacher_pretrained, "teacher_pretrained should be set"
    checkpoint.load_params(exe, teacher_program, FLAGS.teacher_pretrained)
    teacher_program = teacher_program.clone(for_test=True)

    data_name_map = {
        'target0': 'target0',
        'target1': 'target1',
        'target2': 'target2',
        'image': 'image',
        'gt_bbox': 'gt_bbox',
        'gt_class': 'gt_class',
        'gt_score': 'gt_score'
    }
    merge(teacher_program, fluid.default_main_program(), data_name_map, place)

    yolo_output_names = [
        'strided_slice_0.tmp_0', 'strided_slice_1.tmp_0',
        'strided_slice_2.tmp_0', 'strided_slice_3.tmp_0',
        'strided_slice_4.tmp_0', 'transpose_0.tmp_0', 'strided_slice_5.tmp_0',
        'strided_slice_6.tmp_0', 'strided_slice_7.tmp_0',
        'strided_slice_8.tmp_0', 'strided_slice_9.tmp_0', 'transpose_2.tmp_0',
        'strided_slice_10.tmp_0', 'strided_slice_11.tmp_0',
        'strided_slice_12.tmp_0', 'strided_slice_13.tmp_0',
        'strided_slice_14.tmp_0', 'transpose_4.tmp_0'
    ]

    assert cfg.use_fine_grained_loss, \
        "Only support use_fine_grained_loss=True, Please set it in config file or '-o use_fine_grained_loss=true'"
    distill_loss = split_distill(yolo_output_names, 1000)
    loss = distill_loss + loss
    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')
    lr = lr_builder()
    opt = optim_builder(lr)
    opt.minimize(loss)

    exe.run(fluid.default_startup_program())
    checkpoint.load_params(exe,
                           fluid.default_main_program(), cfg.pretrain_weights)


    assert FLAGS.pruned_params is not None, \
        "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
    logger.info("pruned ratios: {}".format(pruned_ratios))
    assert len(pruned_params) == len(pruned_ratios), \
        "The length of pruned params and pruned ratios should be equal."
    assert pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios), \
        "The elements of pruned ratios should be in range (0, 1)."

238 239 240
    assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \
            "unsupported prune criterion {}".format(FLAGS.prune_criterion)
    pruner = Pruner(criterion=FLAGS.prune_criterion)
K
Kaipeng Deng 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    distill_prog = pruner.prune(
        fluid.default_main_program(),
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=False)[0]

    base_flops = flops(eval_prog)
    eval_prog = pruner.prune(
        eval_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=True)[0]
    pruned_flops = flops(eval_prog)
    logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format(
        float(base_flops - pruned_flops) / base_flops, base_flops,
        pruned_flops))

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1

    parallel_main = fluid.CompiledProgram(distill_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
281
    compiled_eval_prog = fluid.CompiledProgram(eval_prog)
K
Kaipeng Deng 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    # parse eval fetches
    extra_keys = []
    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
        extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
    eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                     extra_keys)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()
    map_type = cfg.map_type if 'map_type' in cfg else '11point'
    best_box_ap_list = [0.0, 0]  #[map, iter]
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)

    train_loader.start()
    for step_id in range(start_iter, cfg.max_iters):
        teacher_loss_np, distill_loss_np, loss_np, lr_np = exe.run(
            parallel_main,
            fetch_list=[
                'teacher_' + teacher_loss.name, distill_loss.name, loss.name,
                lr.name
            ])
        if step_id % cfg.log_iter == 0:
            logger.info(
                "step {} lr {:.6f}, loss {:.6f}, distill_loss {:.6f}, teacher_loss {:.6f}".
                format(step_id, lr_np[0], loss_np[0], distill_loss_np[0],
                       teacher_loss_np[0]))
        if step_id % cfg.snapshot_iter == 0 and step_id != 0 or step_id == cfg.max_iters - 1:
            save_name = str(
                step_id) if step_id != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, distill_prog,
                            os.path.join(save_dir, save_name))
            # eval
            results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
                               eval_values, eval_cls)
            resolution = None
            box_ap_stats = eval_results(results, cfg.metric, cfg.num_classes,
                                        resolution, is_bbox_normalized,
                                        FLAGS.output_eval, map_type,
                                        cfg['EvalReader']['dataset'])

            if box_ap_stats[0] > best_box_ap_list[0]:
                best_box_ap_list[0] = box_ap_stats[0]
                best_box_ap_list[1] = step_id
                checkpoint.save(exe, distill_prog,
                                os.path.join("./", "best_model"))
            logger.info("Best test box ap: {}, in step: {}".format(
                best_box_ap_list[0], best_box_ap_list[1]))
    train_loader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-t",
        "--teacher_config",
        default=None,
        type=str,
        help="Config file of teacher architecture.")
    parser.add_argument(
        "--teacher_pretrained",
        default=None,
        type=str,
        help="Whether to use pretrained model.")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")

    parser.add_argument(
        "-p",
        "--pruned_params",
        default=None,
        type=str,
        help="The parameters to be pruned when calculating sensitivities.")
    parser.add_argument(
        "--pruned_ratios",
        default=None,
        type=str,
        help="The ratios pruned iteratively for each parameter when calculating sensitivities."
    )
370 371 372 373 374 375
    parser.add_argument(
        "--prune_criterion",
        default='l1_norm',
        type=str,
        help="criterion function type for channels sorting in pruning, can be set " \
             "as 'l1_norm' or 'geometry_median' currently, default 'l1_norm'")
K
Kaipeng Deng 已提交
376 377
    FLAGS = parser.parse_args()
    main()