subgraph_splitter.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/analysis/subgraph_splitter.h"

namespace paddle {
namespace inference {
namespace analysis {

const char *SubGraphSplitter::kMarkerAttrName =
    "_sub_graph_splitter_inside_sub_graph";

std::vector<std::vector<Node *>> SubGraphSplitter::operator()() {
  MarkNodesInsideSubGraph();
  return ExtractSubGraphs();
}

// Mark the output variables inside a subgraph with the func.
inline void MarkOutLinksInSubGraph(const Function *func) {
  for (auto *var : func->outlinks) {
    var->attr(SubGraphSplitter::kMarkerAttrName).Bool() = true;
  }
}

void SubGraphSplitter::MarkNodesInsideSubGraph() {
37
  for (auto &node : GraphTraits<DataFlowGraph>(*graph_).nodes()) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    if (node_inside_subgraph_teller_(&node)) {
      node.attr(kMarkerAttrName).Bool() = true;
      if (node.type() == Node::Type::kFunction) {
        // If a function is inside the sub-graph, mark all the output variables
        // to be inside too, so that two marked functions will be inside a same
        // sub-graph, lets take a example:  A_function->var->B_function, if
        // A_function is marked, var should also be marked, so that B_function
        // will be in the same sub-graph with A_function if B_function is
        // marked.
        MarkOutLinksInSubGraph(static_cast<const Function *>(&node));
      }
    }
  }
}

const char *kUnionFindParent = "_sub_graph_splitter_union_find_parent_";

// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using node_map_t = std::unordered_map<int, Node *>;
// Find the ancestor id of a node.
int UnionFindGetAncestor(const node_map_t &node_map, size_t id) {
  int tmp = id;
  do {
    tmp = node_map.at(tmp)->attr(kUnionFindParent).Int32();
  } while (node_map.at(tmp)->attr(kUnionFindParent).Int32() != tmp);
  return tmp;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
  int a_ancestor = UnionFindGetAncestor(node_map, a);
  int b_ancestor = UnionFindGetAncestor(node_map, b);
  node_map.at(b_ancestor)->attr(kUnionFindParent).Int32() = a_ancestor;
  node_map.at(a)->attr(kUnionFindParent).Int32() = a_ancestor;
  node_map.at(b)->attr(kUnionFindParent).Int32() = a_ancestor;
}

N
nhzlx 已提交
77 78 79 80 81 82 83 84 85 86 87
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct BriefNode {
  explicit BriefNode(Node *n) { node = n; }
  Node *node;
  std::vector<BriefNode *> inlinks;
  std::vector<BriefNode *> outlinks;
};

88 89 90 91 92 93 94 95
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
N
nhzlx 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
                          int src_id, int dst_id) {
  // merge the two adjacent nodes into one node.
  BriefNode *src_node = node_map.at(src_id);
  BriefNode *dst_node = node_map.at(dst_id);

  std::unordered_set<BriefNode *> inputs(src_node->inlinks.begin(),
                                         src_node->inlinks.end());
  std::unordered_set<BriefNode *> outputs;

  for (auto *n : src_node->outlinks) {
    if (n != dst_node) outputs.insert(n);
  }

  // Add the inlinks and outlinks of dst node to src node.
  std::vector<BriefNode *> dst_in_nodes = dst_node->inlinks;
  for (BriefNode *node : dst_in_nodes) {
    if (node != src_node) {
      inputs.insert(node);
    }
  }

  std::vector<BriefNode *> dst_out_nodes = dst_node->outlinks;
  for (BriefNode *node : dst_out_nodes) {
    outputs.insert(node);
  }

123 124 125 126 127 128 129
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
  src_node->inlinks = std::vector<BriefNode *>(inputs.begin(), inputs.end());
  src_node->outlinks = std::vector<BriefNode *>(outputs.begin(), outputs.end());
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
#else
N
nhzlx 已提交
130 131 132 133 134 135
  src_node->inlinks =
      std::move(std::vector<BriefNode *>(inputs.begin(), inputs.end()));
  src_node->outlinks =
      std::move(std::vector<BriefNode *>(outputs.begin(), outputs.end()));
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
136
#endif
N
nhzlx 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  auto inlink_or_outlink_cleaner = [&](std::vector<BriefNode *> &nodes) {
    for (auto *&n : nodes) {
      if (n == src_node || n == dst_node) {
        n = src_node;
      }
    }
  };
  // Change all the dst inputs and outputs corresponding inlink and
  // outlink to the src node.
  for (auto *node : src_node->inlinks) {
    inlink_or_outlink_cleaner(node->outlinks);
  }

  for (auto *node : src_node->outlinks) {
    inlink_or_outlink_cleaner(node->inlinks);
  }
}

N
nhzlx 已提交
156
// FlexibleDFS
N
nhzlx 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void FlexibleDFS(const std::vector<BriefNode *> &source, bool reverse,
                 const std::function<bool(const BriefNode *)> &enter,
                 const std::function<bool(const BriefNode *)> &leave) {
  typedef struct {
    const BriefNode *node;
    bool leave;
  } FNode;

  std::vector<FNode> stack;
  for (auto &node : source) {
    stack.push_back(FNode{node, false});
  }
  std::unordered_set<const BriefNode *> visited;
  while (!stack.empty()) {
    auto fnode = stack.back();
    stack.pop_back();

    if (fnode.leave) {
      if (leave && !leave(fnode.node)) return;
    }
    if (visited.count(fnode.node)) continue;
    visited.insert(fnode.node);

    if (enter && !enter(fnode.node)) return;

    if (leave) stack.push_back(FNode{fnode.node, true});
    const std::vector<BriefNode *> iter_nodes =
        reverse == true ? fnode.node->inlinks : fnode.node->outlinks;
    for (const BriefNode *node : iter_nodes) {
      if (!visited.count(node)) {
        stack.push_back(FNode{node, false});
      }
    }
  }
}

198
std::vector<std::vector<Node *>> SubGraphSplitter::ExtractSubGraphs() {
N
nhzlx 已提交
199
  // Run the Extract algorithm to find all subgraphs.
200
  std::vector<Node *> marked_nodes;
N
nhzlx 已提交
201 202 203 204
  //  We use brief_node_map to represent the original graph in order to avoid
  //  changing the original graph.
  std::unordered_map<int, BriefNode *> brief_node_map;

205
  for (auto &node : GraphTraits<DataFlowGraph>(*graph_).nodes_in_TS()) {
N
nhzlx 已提交
206
    brief_node_map[node.id()] = new BriefNode(&node);
207 208 209 210
    if (node.attr(kMarkerAttrName).Bool()) {
      marked_nodes.push_back(&node);
    }
  }
N
nhzlx 已提交
211

212 213 214 215 216 217 218
  // extract sub-graphs in the marked node set, use Union Find algorithm.
  node_map_t node_map;  // id to ptr
  for (auto *n : marked_nodes) {
    // n's parent == n.id means it is the ancestor
    n->attr(kUnionFindParent).Int32() = n->id();
    node_map[n->id()] = n;
  }
N
nhzlx 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

  // create breif node map
  for (auto &itr : brief_node_map) {
    for (Node *node : itr.second->node->inlinks) {
      itr.second->inlinks.push_back(brief_node_map[node->id()]);
    }

    for (Node *node : itr.second->node->outlinks) {
      itr.second->outlinks.push_back(brief_node_map[node->id()]);
    }
  }

  for (auto &itr : brief_node_map) {
    BriefNode *brief_node = itr.second;

    if (!brief_node->node->attr(kMarkerAttrName).Bool()) {
235
      VLOG(40) << brief_node->node->id() << " node not a trt candicate.";
N
nhzlx 已提交
236 237 238 239 240 241
      continue;
    }

    //  Our algorithm must guarantee that:
    //  1. The graph is always directed acyclic graph(DAG).
    //  2. If there is a path in the subgraph from X to Y (X and Y are both
242 243
    //  nodes in the subgraph), then all paths from X to Y are in the
    //  subgraph.
N
nhzlx 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    //
    //  In order to achieve the above guarantee.
    //  For adjacent nodes src -> dst.
    //  1. Get all dst input nodes except src.
    //  2. Reverse DFS from those input nodes
    //  3. If there is a path from input nodes to src,
    //  then the src and dst nodes can not be fused into one node,
    //  otherwise it can be done.

    while (true) {
      std::unordered_set<BriefNode *> contract_nodes;
      for (auto *out : brief_node->outlinks) {
        // must be an trt candidate
        if (!out->node->attr(kMarkerAttrName).Bool()) continue;
        // get all dst input nodes except src.
        std::vector<BriefNode *> source_nodes;
        for (auto *n : out->inlinks) {
          if (n != brief_node) {
            source_nodes.push_back(n);
          }
        }

        // Reverse DFS from the source_nodes.
        bool have_excess_path = false;
        FlexibleDFS(source_nodes, true, nullptr,
                    [&have_excess_path, brief_node](const BriefNode *n) {
                      if (n == brief_node) {
                        have_excess_path = true;
                        return false;
                      }
                      return true;
                    });
        if (have_excess_path) continue;
        contract_nodes.insert(out);
      }
      if (contract_nodes.empty()) break;

      for (auto dst_node : contract_nodes) {
        UnionFindCombine(node_map, brief_node->node->id(),
                         dst_node->node->id());
        UnionContractedNodes(brief_node_map, brief_node->node->id(),
                             dst_node->node->id());
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      }
    }
  }

  std::unordered_map<int /*ancestor*/, std::vector<Node *>> clusters;
  for (auto *n : marked_nodes) {
    if (n->type() == Node::Type::kFunction) {
      clusters[UnionFindGetAncestor(node_map,
                                    n->attr(kUnionFindParent).Int32())]
          .push_back(n);
    }
  }
  std::vector<std::vector<Node *>> result;
  std::for_each(clusters.begin(), clusters.end(),
                [&](const decltype(clusters)::value_type &it) {
                  result.push_back(it.second);
                });

  return result;
}

void SubGraphFuse::operator()() { ReplaceNodesWithSubGraphs(); }

void SubGraphFuse::ReplaceNodesWithSubGraphs() {
  auto subgraphs = SubGraphSplitter(graph_, node_inside_subgraph_teller_)();
  for (auto &subgraph : subgraphs) {
N
nhzlx 已提交
312
    if (subgraph.size() <= argument_->Get<int>("minimum_subgraph_size"))
N
nhzlx 已提交
313
      continue;
314
    std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end());
315 316 317
    // replace this sub-graph with the first node. Two steps: 1. Create a Block
    // Node that contains this subgraph 2. Mark the nodes inside the sub-graph
    // as deleted. 3. Replace the deleted node with the new Block Node.
318 319
    auto *block_node = static_cast<FunctionBlock *>(
        graph_->nodes.Create(Node::Type::kFunctionBlock));
320 321 322
    auto io = ExtractInputAndOutputOfSubGraph(subgraph);
    block_node->inlinks = std::move(io.first);
    block_node->outlinks = std::move(io.second);
N
nhzlx 已提交
323

324 325 326 327
    for (auto *node : subgraph) {
      // TODO(Superjomn) need a unified mechanism to treat deleted node in each
      // pass.
      node->SetDeleted();
328
      block_node->subgraph.push_back(node);
329 330
    }

331 332 333 334 335 336 337 338 339 340 341 342 343
    // Change all the sub-graph's inputs and outputs corresponding inlink and
    // outlink to this sub-graph node.
    auto inlink_or_outlink_cleaner = [&](std::vector<Node *> &nodes) {
      for (auto *&n : nodes) {
        if (subgraph_uniq.count(n)) {
          n = block_node;
        }
      }
      std::unordered_set<Node *> uniq(nodes.begin(), nodes.end());
      nodes.assign(uniq.begin(), uniq.end());
    };
    for (auto *i : block_node->inlinks) {
      inlink_or_outlink_cleaner(i->outlinks);
344
    }
345 346
    for (auto *&o : block_node->outlinks) {
      inlink_or_outlink_cleaner(o->inlinks);
347 348
    }
  }
N
nhzlx 已提交
349
  FilterRedundantOutputOfSubGraph(graph_);
350 351 352 353 354
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle