pose3d_loss.py 7.8 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from itertools import cycle, islice
from collections import abc
import paddle
import paddle.nn as nn
Z
zhiboniu 已提交
23
import paddle.nn.functional as F
Z
zhiboniu 已提交
24 25

from ppdet.core.workspace import register, serializable
Z
zhiboniu 已提交
26 27
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
Z
zhiboniu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

__all__ = ['Pose3DLoss']


@register
@serializable
class Pose3DLoss(nn.Layer):
    def __init__(self, weight_3d=1.0, weight_2d=0.0, reduction='none'):
        """
        KeyPointMSELoss layer

        Args:
            weight_3d (float): weight of 3d loss
            weight_2d (float): weight of 2d loss
            reduction (bool): whether use reduction to loss
        """
        super(Pose3DLoss, self).__init__()
        self.weight_3d = weight_3d
        self.weight_2d = weight_2d
        self.criterion_2dpose = nn.MSELoss(reduction=reduction)
Z
zhiboniu 已提交
48
        self.criterion_3dpose = nn.L1Loss(reduction=reduction)
Z
zhiboniu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62
        self.criterion_smoothl1 = nn.SmoothL1Loss(
            reduction=reduction, delta=1.0)
        self.criterion_vertices = nn.L1Loss()

    def forward(self, pred3d, pred2d, inputs):
        """
        mpjpe: mpjpe loss between 3d joints
        keypoint_2d_loss: 2d joints loss compute by criterion_2dpose
        """
        gt_3d_joints = inputs['joints_3d']
        gt_2d_joints = inputs['joints_2d']
        has_3d_joints = inputs['has_3d_joints']
        has_2d_joints = inputs['has_2d_joints']

Z
zhiboniu 已提交
63 64 65 66 67 68 69 70 71 72 73
        loss_3d = mpjpe_focal(pred3d, gt_3d_joints, has_3d_joints)
        loss = self.weight_3d * loss_3d
        epoch = inputs['epoch_id']
        if self.weight_2d > 0:
            weight = self.weight_2d * pow(0.1, (epoch // 8))
            if epoch > 8:
                weight = 0
            loss_2d = keypoint_2d_loss(self.criterion_2dpose, pred2d,
                                       gt_2d_joints, has_2d_joints)
            loss += weight * loss_2d
        return loss
Z
zhiboniu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


def filter_3d_joints(pred, gt, has_3d_joints):
    """ 
    filter 3d joints
    """
    gt = gt[has_3d_joints == 1]
    gt = gt[:, :, :3]
    pred = pred[has_3d_joints == 1]

    gt_pelvis = (gt[:, 2, :] + gt[:, 3, :]) / 2
    gt = gt - gt_pelvis[:, None, :]
    pred_pelvis = (pred[:, 2, :] + pred[:, 3, :]) / 2
    pred = pred - pred_pelvis[:, None, :]
    return pred, gt


def mpjpe(pred, gt, has_3d_joints):
    """ 
    mPJPE loss
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
Z
zhiboniu 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    error = paddle.sqrt((paddle.minimum((pred - gt), paddle.to_tensor(1.2))**2
                         ).sum(axis=-1)).mean()
    return error


def mpjpe_focal(pred, gt, has_3d_joints):
    """ 
    mPJPE loss
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
    mse_error = ((pred - gt)**2).sum(axis=-1)
    mpjpe_error = paddle.sqrt(mse_error)
    mean = mpjpe_error.mean()
    std = mpjpe_error.std()
    atte = 2 * F.sigmoid(6 * (mpjpe_error - mean) / std)
    mse_error *= atte
    return mse_error.mean()


def mpjpe_mse(pred, gt, has_3d_joints, weight=1.):
    """ 
    mPJPE loss
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
    error = (((pred - gt)**2).sum(axis=-1)).mean()
Z
zhiboniu 已提交
121 122 123 124 125 126 127 128
    return error


def mpjpe_criterion(pred, gt, has_3d_joints, criterion_pose3d):
    """ 
    mPJPE loss of self define criterion
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
Z
zhiboniu 已提交
129
    error = paddle.sqrt(criterion_pose3d(pred, gt)).mean()
Z
zhiboniu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    return error


@register
@serializable
def weighted_mpjpe(pred, gt, has_3d_joints):
    """ 
    Weighted_mPJPE
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
    weight = paddle.linalg.norm(pred, p=2, axis=-1)
    weight = paddle.to_tensor(
        [1.5, 1.3, 1.2, 1.2, 1.3, 1.5, 1.5, 1.3, 1.2, 1.2, 1.3, 1.5, 1., 1.])
    error = (weight * paddle.linalg.norm(pred - gt, p=2, axis=-1)).mean()
    return error


@register
@serializable
def normed_mpjpe(pred, gt, has_3d_joints):
    """
    Normalized MPJPE (scale only), adapted from:
    https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py
    """
    assert pred.shape == gt.shape
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)

    norm_predicted = paddle.mean(
        paddle.sum(pred**2, axis=3, keepdim=True), axis=2, keepdim=True)
    norm_target = paddle.mean(
        paddle.sum(gt * pred, axis=3, keepdim=True), axis=2, keepdim=True)
    scale = norm_target / norm_predicted
    return mpjpe(scale * pred, gt)


@register
@serializable
def mpjpe_np(pred, gt, has_3d_joints):
    """ 
    mPJPE_NP
    """
    pred, gt = filter_3d_joints(pred, gt, has_3d_joints)
    error = np.sqrt(((pred - gt)**2).sum(axis=-1)).mean()
    return error


@register
@serializable
def mean_per_vertex_error(pred, gt, has_smpl):
    """
    Compute mPVE
    """
    pred = pred[has_smpl == 1]
    gt = gt[has_smpl == 1]
    with paddle.no_grad():
        error = paddle.sqrt(((pred - gt)**2).sum(axis=-1)).mean()
        return error


@register
@serializable
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d,
                     has_pose_2d):
    """
    Compute 2D reprojection loss if 2D keypoint annotations are available.
    The confidence (conf) is binary and indicates whether the keypoints exist or not.
    """
    conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
Z
zhiboniu 已提交
198 199
    loss = (conf * criterion_keypoints(
        pred_keypoints_2d, gt_keypoints_2d[:, :, :-1] * 0.001)).mean()
Z
zhiboniu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    return loss


@register
@serializable
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d,
                     has_pose_3d):
    """
    Compute 3D keypoint loss if 3D keypoint annotations are available.
    """
    conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
    gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
    gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
    conf = conf[has_pose_3d == 1]
    pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
    if len(gt_keypoints_3d) > 0:
        gt_pelvis = (gt_keypoints_3d[:, 2, :] + gt_keypoints_3d[:, 3, :]) / 2
        gt_keypoints_3d = gt_keypoints_3d - gt_pelvis[:, None, :]
        pred_pelvis = (
            pred_keypoints_3d[:, 2, :] + pred_keypoints_3d[:, 3, :]) / 2
        pred_keypoints_3d = pred_keypoints_3d - pred_pelvis[:, None, :]
        return (conf * criterion_keypoints(pred_keypoints_3d,
                                           gt_keypoints_3d)).mean()
    else:
        return paddle.to_tensor([1.]).fill_(0.)


@register
@serializable
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl):
    """
    Compute per-vertex loss if vertex annotations are available.
    """
    pred_vertices_with_shape = pred_vertices[has_smpl == 1]
    gt_vertices_with_shape = gt_vertices[has_smpl == 1]
    if len(gt_vertices_with_shape) > 0:
        return criterion_vertices(pred_vertices_with_shape,
                                  gt_vertices_with_shape)
    else:
        return paddle.to_tensor([1.]).fill_(0.)


@register
@serializable
def rectify_pose(pose):
    pose = pose.copy()
    R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0]
    R_root = cv2.Rodrigues(pose[:3])[0]
    new_root = R_root.dot(R_mod)
    pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3)
    return pose