mot_metrics.py 6.2 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import paddle
import numpy as np
from scipy import interpolate
import paddle.nn.functional as F
from .map_utils import ap_per_class
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from .mot_eval_utils import MOTEvaluator
from .metrics import Metric

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['JDEDetMetric', 'JDEReIDMetric', 'MOTMetric']


class JDEDetMetric(Metric):
    def __init__(self, overlap_thresh=0.5):
        self.overlap_thresh = overlap_thresh
        self.reset()

    def reset(self):
        self.AP_accum = np.zeros(1)
        self.AP_accum_count = np.zeros(1)

    def update(self, inputs, outputs):
        bboxes = outputs['bbox'][:, 2:].numpy()
        scores = outputs['bbox'][:, 1].numpy()
        labels = outputs['bbox'][:, 0].numpy()
        bbox_lengths = outputs['bbox_num'].numpy()
        if bboxes.shape[0] == 1 and bboxes.sum() == 0.0:
            return

        gt_boxes = inputs['gt_bbox'].numpy()[0]
        gt_labels = inputs['gt_class'].numpy()[0]
        if gt_labels.shape[0] == 0:
            return

        correct = []
        detected = []
        for i in range(bboxes.shape[0]):
            obj_pred = 0
            pred_bbox = bboxes[i].reshape(1, 4)
            # Compute iou with target boxes
            iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0]
            # Extract index of largest overlap
            best_i = np.argmax(iou)
            # If overlap exceeds threshold and classification is correct mark as correct
            if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[
                    best_i] and best_i not in detected:
                correct.append(1)
                detected.append(best_i)
            else:
                correct.append(0)

        # Compute Average Precision (AP) per class
        target_cls = list(gt_labels.T[0])
        AP, AP_class, R, P = ap_per_class(
            tp=correct,
            conf=scores,
            pred_cls=np.zeros_like(scores),
            target_cls=target_cls)
        self.AP_accum_count += np.bincount(AP_class, minlength=1)
        self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP)

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16)

    def log(self):
        map_stat = 100. * self.map_stat
        logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh,
                                                   map_stat))

    def get_results(self):
        return self.map_stat


class JDEReIDMetric(Metric):
    def __init__(self, far_levels=[1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1]):
        self.far_levels = far_levels
        self.reset()

    def reset(self):
        self.embedding = []
        self.id_labels = []
        self.eval_results = {}

    def update(self, inputs, outputs):
        for out in outputs:
            feat, label = out[:-1].clone().detach(), int(out[-1])
            if label != -1:
                self.embedding.append(feat)
                self.id_labels.append(label)

    def accumulate(self):
        logger.info("Computing pairwise similairity...")
        assert len(self.embedding) == len(self.id_labels)
        if len(self.embedding) < 1:
            return None
        embedding = paddle.stack(self.embedding, axis=0)
        emb = F.normalize(embedding, axis=1).numpy()
        pdist = np.matmul(emb, emb.T)

        id_labels = np.array(self.id_labels, dtype='int32').reshape(-1, 1)
        n = len(id_labels)
        id_lbl = np.tile(id_labels, n).T
        gt = id_lbl == id_lbl.T

        up_triangle = np.where(np.triu(pdist) - np.eye(n) * pdist != 0)
        pdist = pdist[up_triangle]
        gt = gt[up_triangle]

        # lazy import metrics here
        from sklearn import metrics
        far, tar, threshold = metrics.roc_curve(gt, pdist)
        interp = interpolate.interp1d(far, tar)
        tar_at_far = [interp(x) for x in self.far_levels]

        for f, fa in enumerate(self.far_levels):
            self.eval_results['TPR@FAR={:.7f}'.format(fa)] = ' {:.4f}'.format(
                tar_at_far[f])

    def log(self):
        for k, v in self.eval_results.items():
            logger.info('{}: {}'.format(k, v))

    def get_results(self):
        return self.eval_results


class MOTMetric(Metric):
    def __init__(self, save_summary=False):
        self.save_summary = save_summary
        self.MOTEvaluator = MOTEvaluator
        self.result_root = None
        self.reset()

    def reset(self):
        self.accs = []
        self.seqs = []

    def update(self, data_root, seq, data_type, result_root, result_filename):
        evaluator = self.MOTEvaluator(data_root, seq, data_type)
        self.accs.append(evaluator.eval_file(result_filename))
        self.seqs.append(seq)
        self.result_root = result_root

    def accumulate(self):
        import motmetrics as mm
        import openpyxl
        metrics = mm.metrics.motchallenge_metrics
        mh = mm.metrics.create()
        summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics)
        self.strsummary = mm.io.render_summary(
            summary,
            formatters=mh.formatters,
            namemap=mm.io.motchallenge_metric_names)
        if self.save_summary:
            self.MOTEvaluator.save_summary(
                summary, os.path.join(self.result_root, 'summary.xlsx'))

    def log(self):
        print(self.strsummary)

    def get_results(self):
        return self.strsummary