RecurrentLayer.cpp 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include "RecurrentLayer.h"
L
liaogang 已提交
16
#include <gflags/gflags.h>
Z
zhangjinchao01 已提交
17 18
#include "Layer.h"
#include "SequenceToBatch.h"
Y
Yu Yang 已提交
19
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
20

21
DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation.");
Z
zhangjinchao01 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {

REGISTER_LAYER(recurrent, RecurrentLayer);

bool RecurrentLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(1U, inputLayers_.size());
  CHECK_EQ(1U, parameters_.size());
  CHECK_EQ(getSize() * getSize(), parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize(), parameters_[0]));
  if (biasParameter_.get() != NULL) {
    bias_.reset(new Weight(1, getSize(), biasParameter_));
  }
  reversed_ = config_.reversed();
  return true;
}

void RecurrentLayer::resetState() {
  CHECK(!reversed_) << "state is not allowed for reversed recurrent layer";
43 44
  Matrix::resizeOrCreate(
      prevOutput_, 1, getSize(), /* trans= */ false, useGpu_);
Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  prevOutput_->zeroMem();
}

void RecurrentLayer::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1) << "one matrix is expected for RNN state";
  prevOutput_->copyFrom(*(state->value[0]));
}

LayerStatePtr RecurrentLayer::getState() {
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
  res->value[0]->copyFrom(*prevOutput_);
  return res;
}

void RecurrentLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("RecurrentFwTimer", getName().c_str());
  Layer::forward(passType);
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  resetOutput(batchSize, getSize());
  CHECK_EQ(getSize(), input.value->getWidth());
  const int* starts = input.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);

  output_.value->assign(*input.value);
  if (bias_) {
    output_.value->addBias(*bias_->getW(), 1);
  }
  if (!FLAGS_rnn_use_batch) {
    forwardSequence(batchSize, numSequences, starts);
  } else {
    forwardBatch(batchSize, numSequences, starts);
  }
}

83 84
void RecurrentLayer::forwardSequence(int batchSize,
                                     size_t numSequences,
Z
zhangjinchao01 已提交
85 86 87 88 89
                                     const int* starts) {
  REGISTER_TIMER_INFO("RecurrentFwSequence", getName().c_str());
  frameOutput_.reserve(batchSize);
  for (int i = frameOutput_.size(); i < batchSize; ++i) {
    Argument arg;
90 91 92 93 94 95 96 97 98 99
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               getSize(),
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              getSize(),
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    frameOutput_.push_back(arg);
  }

  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].value->setData(output_.value->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    forwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::forwardOneSequence(int start, int length) {
  if (!reversed_) {
    if (prevOutput_) {
116
      frameOutput_[start].value->mul(*prevOutput_, *weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
117
    }
118 119
    activation_->forward(frameOutput_[start]).check();

Z
zhangjinchao01 已提交
120
    for (int i = 1; i < length; ++i) {
121
      frameOutput_[start + i].value->mul(
122
          *frameOutput_[start + i - 1].value, *weight_->getW(), 1, 1);
123
      activation_->forward(frameOutput_[start + i]).check();
Z
zhangjinchao01 已提交
124 125 126 127 128
    }
    if (prevOutput_) {
      prevOutput_->assign(*frameOutput_[start + length - 1].value);
    }
  } else {
129
    activation_->forward(frameOutput_[start + length - 1]).check();
Z
zhangjinchao01 已提交
130
    for (int i = length - 2; i >= 0; --i) {
131
      frameOutput_[start + i].value->mul(
132
          *frameOutput_[start + i + 1].value, *weight_->getW(), 1, 1);
133
      activation_->forward(frameOutput_[start + i]).check();
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    }
  }
}

void RecurrentLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTimer", getName().c_str());
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  const int* starts = input.sequenceStartPositions->getData(false);
  size_t numSequences = input.getNumSequences();

  if (!FLAGS_rnn_use_batch) {
    backwardSequence(batchSize, numSequences, starts);
  } else {
    backwardBatch(batchSize, numSequences, starts);
  }

  if (input.grad) {
    input.grad->add(*output_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*output_.grad, 1);
    bias_->getParameterPtr()->incUpdate(callback);
  }
  weight_->getParameterPtr()->incUpdate(callback);
}

163 164
void RecurrentLayer::backwardSequence(int batchSize,
                                      size_t numSequences,
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                                      const int* starts) {
  REGISTER_TIMER_INFO("RecurrentBwSequence", getName().c_str());
  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].grad->setData(output_.grad->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    backwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::backwardOneSequence(int start, int length) {
  MatrixPtr weightT = weight_->getW()->getTranspose();
  if (!reversed_) {
    for (int i = length - 1; i > 0; --i) {
181
      activation_->backward(frameOutput_[start + i]).check();
182
      frameOutput_[start + i - 1].grad->mul(
183
          *frameOutput_[start + i].grad, *weightT, 1, 1);
Z
zhangjinchao01 已提交
184
    }
185
    activation_->backward(frameOutput_[start]).check();
Z
zhangjinchao01 已提交
186 187
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
188 189
          *output_.value->subMatrix(start, length - 1)->getTranspose(),
          *output_.grad->subMatrix(start + 1, length - 1),
190 191
          1,
          1);
Z
zhangjinchao01 已提交
192 193 194
    }
  } else {
    for (int i = 0; i < length - 1; ++i) {
195
      activation_->backward(frameOutput_[start + i]).check();
196
      frameOutput_[start + i + 1].grad->mul(
197
          *frameOutput_[start + i].grad, *weightT, 1, 1);
Z
zhangjinchao01 已提交
198
    }
199
    activation_->backward(frameOutput_[start + length - 1]).check();
Z
zhangjinchao01 已提交
200 201
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
202 203
          *output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
          *output_.grad->subMatrix(start, length - 1),
204 205
          1,
          1);
Z
zhangjinchao01 已提交
206 207 208 209
    }
  }
}

210 211
void RecurrentLayer::forwardBatch(int batchSize,
                                  size_t numSequences,
Z
zhangjinchao01 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                                  const int* starts) {
  if (!batchValue_) {
    batchValue_.reset(new SequenceToBatch(useGpu_));
  }

  batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_);

  batchValue_->copyFromSeq(*output_.value);
  {
    REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    /* forward one batch */
    for (size_t n = 0; n < batchValue_->getNumBatch(); n++) {
      MatrixPtr batch2 = batchValue_->getBatchValue(n);

      if (n != 0) {
        MatrixPtr batch1 =
            batchValue_->getBatchValue(n - 1, batch2->getHeight());
230
        batch2->mul(*batch1, *weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
231 232 233
      }
      Argument arg;
      arg.value = batch2;
234
      activation_->forward(arg).check();
Z
zhangjinchao01 已提交
235 236 237 238 239
    }
  }
  batchValue_->copyBackSeq(*output_.value);
}

240 241
void RecurrentLayer::backwardBatch(int batchSize,
                                   size_t numSequences,
Z
zhangjinchao01 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                                   const int* starts) {
  if (!batchGrad_) {
    batchGrad_.reset(new SequenceToBatch(useGpu_));
  }
  batchGrad_->shareIndexWith(*batchValue_);

  size_t numBatch = batchGrad_->getNumBatch();
  bool backwardByBatch = numBatch < numSequences;

  batchGrad_->copyFromSeq(*output_.grad);
  {
    REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str());
    MatrixPtr weightT = weight_->getW()->getTranspose();
    AsyncGpuBlock asyncGpuBlock;
    /* backward one batch */
    for (int n = (int)numBatch - 1; n >= 0; n--) {
      MatrixPtr batch2 = batchGrad_->getBatchValue(n);
      MatrixPtr batch1 = batchValue_->getBatchValue(n, batch2->getHeight());

      Argument arg;
      arg.value = batch1;
      arg.grad = batch2;
264
      activation_->backward(arg).check();
Z
zhangjinchao01 已提交
265 266 267

      if (n != 0) {
        batch1 = batchGrad_->getBatchValue(n - 1, batch2->getHeight());
268
        batch1->mul(*batch2, *weightT, 1, 1);
Z
zhangjinchao01 已提交
269 270 271 272 273 274
      }

      if (backwardByBatch && weight_->getWGrad()) {
        if (n != 0) {
          /* backward weight */
          batch1 = batchValue_->getBatchValue(n - 1, batch2->getHeight());
275
          weight_->getWGrad()->mul(*batch1->getTranspose(), *batch2, 1, 1);
Z
zhangjinchao01 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289
        }
      }
    }
  }

  batchGrad_->copyBackSeq(*output_.grad);

  if (!backwardByBatch && weight_->getWGrad()) {
    REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    for (size_t seq = 0; seq < numSequences; ++seq) {
      int len = starts[seq + 1] - starts[seq];
      if (!reversed_) {
        weight_->getWGrad()->mul(
290 291
            *output_.value->subMatrix(starts[seq], len - 1)->getTranspose(),
            *output_.grad->subMatrix(starts[seq] + 1, len - 1),
292 293
            1,
            1);
Z
zhangjinchao01 已提交
294 295
      } else {
        weight_->getWGrad()->mul(
296 297
            *output_.value->subMatrix(starts[seq] + 1, len - 1)->getTranspose(),
            *output_.grad->subMatrix(starts[seq], len - 1),
298 299
            1,
            1);
Z
zhangjinchao01 已提交
300 301 302 303 304 305
      }
    }
  }
}

}  // namespace paddle