matmul_op.h 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
M
Markus Kliegl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
M
Markus Kliegl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
M
Markus Kliegl 已提交
14 15

#pragma once
16 17
#include <algorithm>
#include <functional>
Y
Yu Yang 已提交
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
21 22
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/operators/math/math_function.h"
M
Markus Kliegl 已提交
24 25 26

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
27 28 29 30 31 32
inline framework::DDim GetXDim(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}
M
Markus Kliegl 已提交
33

Y
Yu Yang 已提交
34 35 36 37 38 39
inline framework::DDim GetYDim(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}
M
Markus Kliegl 已提交
40

Q
QI JUN 已提交
41
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
42 43 44
class MatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
45 46 47 48 49
    auto& x =
        detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
    auto& y =
        detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
    auto* out = context.Output<framework::Tensor>("Out");
M
Markus Kliegl 已提交
50 51
    out->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
52 53 54 55 56 57
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::GetMatDim(GetXDim(x.dims()), 0,
                                     context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::GetMatDim(GetYDim(y.dims()), 0,
                                     context.Attr<bool>("transpose_Y"));
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, T(1), out, T(0));
M
Markus Kliegl 已提交
58 59 60 61 62
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
Yu Yang 已提交
63 64
inline framework::Tensor CombineBatchAndM(const framework::Tensor& input) {
  auto output = input;
M
Markus Kliegl 已提交
65 66
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
Y
Yu Yang 已提交
67
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
M
Markus Kliegl 已提交
68 69 70 71 72 73 74
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
Q
QI JUN 已提交
75
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
76 77
inline framework::Tensor CombineBatchAndN(const DeviceContext& context,
                                          const framework::Tensor& input) {
M
Markus Kliegl 已提交
78
  auto in_dims = input.dims();
Y
Yu Yang 已提交
79 80
  if (in_dims.size() != 3) {
    return input;
M
Markus Kliegl 已提交
81
  }
Y
Yu Yang 已提交
82 83 84 85 86 87 88 89
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});

M
Markus Kliegl 已提交
90 91 92
  return output;
}

Y
Yu Yang 已提交
93
inline void NormalizeTensorShape(framework::Tensor* x,
Y
Yu Yang 已提交
94
                                 const math::MatDescriptor& mat_dim_x) {
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  int64_t h, w;
  h = mat_dim_x.height_;
  w = mat_dim_x.width_;
  if (mat_dim_x.trans_) {
    std::swap(w, h);
  }
  if (mat_dim_x.batch_size_) {
    x->Resize({mat_dim_x.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

inline void NormalizeXYOutTensorShape(framework::Tensor* x,
                                      framework::Tensor* y,
                                      framework::Tensor* out, bool trans_a,
                                      bool trans_b) {
  auto x_dim = GetXDim(x->dims());
  auto y_dim = GetYDim(y->dims());
  auto mat_dim_x = math::GetMatDim(x_dim, 0, trans_a);
  auto mat_dim_y = math::GetMatDim(y_dim, 0, trans_b);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  NormalizeTensorShape(x, mat_dim_x);
  NormalizeTensorShape(y, mat_dim_y);
}

M
Markus Kliegl 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
Q
QI JUN 已提交
152
template <typename DeviceContext, typename T>
M
Markus Kliegl 已提交
153 154
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  void MatMul(const framework::ExecutionContext& context,
              const framework::Tensor& a, bool trans_a,
              const framework::Tensor& b, bool trans_b,
              framework::Tensor* out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::GetMatDim(a.dims(), 0, trans_a);
    auto mat_dim_b = math::GetMatDim(b.dims(), 0, trans_b);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, T(1), out, T(0));
  }

  void CalcInputGrad(const framework::ExecutionContext& context,
                     const framework::Tensor& a, bool trans_a,
                     bool is_combine_m_a, const framework::Tensor& b,
                     bool trans_b, bool is_combine_m_b,
                     framework::Tensor* out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto& ctx = context.template device_context<DeviceContext>();
      MatMul(
          context, is_combine_m_a ? CombineBatchAndM(a)
                                  : CombineBatchAndN<DeviceContext, T>(ctx, a),
          trans_a, is_combine_m_b ? CombineBatchAndM(b)
                                  : CombineBatchAndN<DeviceContext, T>(ctx, b),
          trans_b, out);
    }
  }

M
Markus Kliegl 已提交
187
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
188 189 190 191 192 193
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
M
Markus Kliegl 已提交
194 195 196
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

Y
Yu Yang 已提交
197 198 199 200 201 202 203
    NormalizeXYOutTensorShape(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
M
Markus Kliegl 已提交
204 205
    }

Y
Yu Yang 已提交
206 207 208 209 210 211
    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
M
Markus Kliegl 已提交
212 213
    }

Y
Yu Yang 已提交
214 215 216 217 218 219 220 221 222 223 224 225
    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x && !transpose_y) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (!transpose_x && transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
M
Markus Kliegl 已提交
226 227 228
    }

    if (dx) {
Y
Yu Yang 已提交
229 230
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
M
Markus Kliegl 已提交
231 232 233
      }
    }
    if (dy) {
Y
Yu Yang 已提交
234 235
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
M
Markus Kliegl 已提交
236 237 238 239 240 241 242
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle