test_generate_proposals_op.py 12.4 KB
Newer Older
1 2 3 4 5 6
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
import unittest
import numpy as np
import sys
import math
import paddle.fluid as fluid
from op_test import OpTest
from test_multiclass_nms_op import nms
from test_anchor_generator_op import anchor_generator_in_python
import copy


def generate_proposals_in_python(scores, bbox_deltas, im_info, anchors,
                                 variances, pre_nms_topN, post_nms_topN,
                                 nms_thresh, min_size, eta):
    all_anchors = anchors.reshape(-1, 4)
    rois = np.empty((0, 5), dtype=np.float32)
    roi_probs = np.empty((0, 1), dtype=np.float32)

    rpn_rois = []
    rpn_roi_probs = []
    lod = []
    num_images = scores.shape[0]
    for img_idx in range(num_images):
        img_i_boxes, img_i_probs = proposal_for_one_image(
            im_info[img_idx, :], all_anchors, variances,
            bbox_deltas[img_idx, :, :, :], scores[img_idx, :, :, :],
            pre_nms_topN, post_nms_topN, nms_thresh, min_size, eta)
        lod.append(img_i_probs.shape[0])
        rpn_rois.append(img_i_boxes)
        rpn_roi_probs.append(img_i_probs)

    return rpn_rois, rpn_roi_probs, lod


def proposal_for_one_image(im_info, all_anchors, variances, bbox_deltas, scores,
                           pre_nms_topN, post_nms_topN, nms_thresh, min_size,
                           eta):
    # Transpose and reshape predicted bbox transformations to get them
    # into the same order as the anchors:
    #   - bbox deltas will be (4 * A, H, W) format from conv output
    #   - transpose to (H, W, 4 * A)
    #   - reshape to (H * W * A, 4) where rows are ordered by (H, W, A)
    #     in slowest to fastest order to match the enumerated anchors
    bbox_deltas = bbox_deltas.transpose((1, 2, 0)).reshape(-1, 4)
    all_anchors = all_anchors.reshape(-1, 4)
    variances = variances.reshape(-1, 4)
    # Same story for the scores:
    #   - scores are (A, H, W) format from conv output
    #   - transpose to (H, W, A)
    #   - reshape to (H * W * A, 1) where rows are ordered by (H, W, A)
    #     to match the order of anchors and bbox_deltas
    scores = scores.transpose((1, 2, 0)).reshape(-1, 1)

    # sort all (proposal, score) pairs by score from highest to lowest
    # take top pre_nms_topN (e.g. 6000)
    if pre_nms_topN <= 0 or pre_nms_topN >= len(scores):
        order = np.argsort(-scores.squeeze())
    else:
        # Avoid sorting possibly large arrays;
        # First partition to get top K unsorted
        # and then sort just thoes
        inds = np.argpartition(-scores.squeeze(), pre_nms_topN)[:pre_nms_topN]
        order = np.argsort(-scores[inds].squeeze())
        order = inds[order]
    scores = scores[order, :]
    bbox_deltas = bbox_deltas[order, :]
    all_anchors = all_anchors[order, :]
    proposals = box_coder(all_anchors, bbox_deltas, variances)
    # clip proposals to image (may result in proposals with zero area
    # that will be removed in the next step)
    proposals = clip_tiled_boxes(proposals, im_info[:2])
    # remove predicted boxes with height or width < min_size
    keep = filter_boxes(proposals, min_size, im_info)
    proposals = proposals[keep, :]
    scores = scores[keep, :]

    # apply loose nms (e.g. threshold = 0.7)
    # take post_nms_topN (e.g. 1000)
    # return the top proposals
    if nms_thresh > 0:
        keep = nms(boxes=proposals,
                   scores=scores,
                   nms_threshold=nms_thresh,
                   eta=eta)
        if post_nms_topN > 0 and post_nms_topN < len(keep):
            keep = keep[:post_nms_topN]
        proposals = proposals[keep, :]
        scores = scores[keep, :]

    return proposals, scores


def box_coder(all_anchors, bbox_deltas, variances):
    """
    Decode proposals by anchors and bbox_deltas from RPN 
    """
    #proposals: xmin, ymin, xmax, ymax
    proposals = np.zeros_like(bbox_deltas, dtype=np.float32)

    #anchor_loc: width, height, center_x, center_y
    anchor_loc = np.zeros_like(bbox_deltas, dtype=np.float32)

119 120 121 122
    anchor_loc[:, 0] = all_anchors[:, 2] - all_anchors[:, 0] + 1
    anchor_loc[:, 1] = all_anchors[:, 3] - all_anchors[:, 1] + 1
    anchor_loc[:, 2] = all_anchors[:, 0] + 0.5 * anchor_loc[:, 0]
    anchor_loc[:, 3] = all_anchors[:, 1] + 0.5 * anchor_loc[:, 1]
123 124 125 126 127 128 129 130 131

    #predicted bbox: bbox_center_x, bbox_center_y, bbox_width, bbox_height 
    pred_bbox = np.zeros_like(bbox_deltas, dtype=np.float32)
    if variances is not None:
        for i in range(bbox_deltas.shape[0]):
            pred_bbox[i, 0] = variances[i, 0] * bbox_deltas[i, 0] * anchor_loc[
                i, 0] + anchor_loc[i, 2]
            pred_bbox[i, 1] = variances[i, 1] * bbox_deltas[i, 1] * anchor_loc[
                i, 1] + anchor_loc[i, 3]
132 133 134 135 136 137
            pred_bbox[i, 2] = math.exp(
                min(variances[i, 2] * bbox_deltas[i, 2], math.log(
                    1000 / 16.0))) * anchor_loc[i, 0]
            pred_bbox[i, 3] = math.exp(
                min(variances[i, 3] * bbox_deltas[i, 3], math.log(
                    1000 / 16.0))) * anchor_loc[i, 1]
138 139 140 141 142 143
    else:
        for i in range(bbox_deltas.shape[0]):
            pred_bbox[i, 0] = bbox_deltas[i, 0] * anchor_loc[i, 0] + anchor_loc[
                i, 2]
            pred_bbox[i, 1] = bbox_deltas[i, 1] * anchor_loc[i, 1] + anchor_loc[
                i, 3]
144 145 146 147 148 149
            pred_bbox[i, 2] = math.exp(
                min(bbox_deltas[i, 2], math.log(1000 / 16.0))) * anchor_loc[i,
                                                                            0]
            pred_bbox[i, 3] = math.exp(
                min(bbox_deltas[i, 3], math.log(1000 / 16.0))) * anchor_loc[i,
                                                                            1]
150 151 152

    proposals[:, 0] = pred_bbox[:, 0] - pred_bbox[:, 2] / 2
    proposals[:, 1] = pred_bbox[:, 1] - pred_bbox[:, 3] / 2
153 154
    proposals[:, 2] = pred_bbox[:, 0] + pred_bbox[:, 2] / 2 - 1
    proposals[:, 3] = pred_bbox[:, 1] + pred_bbox[:, 3] / 2 - 1
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    return proposals


def clip_tiled_boxes(boxes, im_shape):
    """Clip boxes to image boundaries. im_shape is [height, width] and boxes
    has shape (N, 4 * num_tiled_boxes)."""
    assert boxes.shape[1] % 4 == 0, \
        'boxes.shape[1] is {:d}, but must be divisible by 4.'.format(
        boxes.shape[1]
    )
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes


def filter_boxes(boxes, min_size, im_info):
    """Only keep boxes with both sides >= min_size and center within the image.
    """
    # Scale min_size to match image scale
181 182
    im_scale = im_info[2]
    min_size = max(min_size, 1.0)
183 184
    ws = boxes[:, 2] - boxes[:, 0] + 1
    hs = boxes[:, 3] - boxes[:, 1] + 1
185 186
    ws_orig_scale = (boxes[:, 2] - boxes[:, 0]) / im_scale + 1
    hs_orig_scale = (boxes[:, 3] - boxes[:, 1]) / im_scale + 1
187 188
    x_ctr = boxes[:, 0] + ws / 2.
    y_ctr = boxes[:, 1] + hs / 2.
189 190
    keep = np.where((ws_orig_scale >= min_size) & (hs_orig_scale >= min_size) &
                    (x_ctr < im_info[1]) & (y_ctr < im_info[0]))[0]
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    return keep


def iou(box_a, box_b):
    """
	Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

    area_a = (ymax_a - ymin_a + 1) * (xmax_a - xmin_a + 1)
    area_b = (ymax_b - ymin_b + 1) * (xmax_b - xmin_b + 1)
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

218
    inter_area = max(xb - xa + 1, 0.0) * max(yb - ya + 1, 0.0)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


def nms(boxes, scores, nms_threshold, eta=1.0):
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        eta: (float) The parameter for adaptive NMS.
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()

    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
    sorted_scores = all_scores[sorted_indices]
    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
                overlap = iou(boxes[idx], boxes[kept_idx])
                keep = True if overlap <= adaptive_threshold else False
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


class TestGenerateProposalsOp(OpTest):
    def set_data(self):
        self.init_test_params()
        self.init_test_input()
        self.init_test_output()
        self.inputs = {
            'Scores': self.scores,
            'BboxDeltas': self.bbox_deltas,
            'ImInfo': self.im_info.astype(np.float32),
            'Anchors': self.anchors,
            'Variances': self.variances
        }

        self.attrs = {
            'pre_nms_topN': self.pre_nms_topN,
            'post_nms_topN': self.post_nms_topN,
            'nms_thresh': self.nms_thresh,
            'min_size': self.min_size,
            'eta': self.eta
        }

        self.outputs = {
            'RpnRois': (self.rpn_rois[0], [self.lod]),
            'RpnRoiProbs': (self.rpn_roi_probs[0], [self.lod])
        }

    def test_check_output(self):
        self.check_output()

    def setUp(self):
        self.op_type = "generate_proposals"
        self.set_data()

    def init_test_params(self):
        self.pre_nms_topN = 12000  # train 12000, test 2000
        self.post_nms_topN = 5000  # train 6000, test 1000
        self.nms_thresh = 0.7
        self.min_size = 3.0
299
        self.eta = 1.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    def init_test_input(self):
        batch_size = 1
        input_channels = 20
        layer_h = 16
        layer_w = 16
        input_feat = np.random.random(
            (batch_size, input_channels, layer_h, layer_w)).astype('float32')
        self.anchors, self.variances = anchor_generator_in_python(
            input_feat=input_feat,
            anchor_sizes=[16., 32.],
            aspect_ratios=[0.5, 1.0],
            variances=[1.0, 1.0, 1.0, 1.0],
            stride=[16.0, 16.0],
            offset=0.5)
        self.im_info = np.array([[64., 64., 8.]])  #im_height, im_width, scale
        num_anchors = self.anchors.shape[2]
        self.scores = np.random.random(
            (batch_size, num_anchors, layer_h, layer_w)).astype('float32')
        self.bbox_deltas = np.random.random(
            (batch_size, num_anchors * 4, layer_h, layer_w)).astype('float32')

    def init_test_output(self):
        self.rpn_rois, self.rpn_roi_probs, self.lod = generate_proposals_in_python(
            self.scores, self.bbox_deltas, self.im_info, self.anchors,
            self.variances, self.pre_nms_topN, self.post_nms_topN,
            self.nms_thresh, self.min_size, self.eta)


if __name__ == '__main__':
    unittest.main()